gtsam
4.0.0
gtsam
|
Global functions in a separate testing namespace. More...
Namespaces | |
imuBias | |
All bias models live in the imuBias namespace. | |
noiseModel | |
All noise models live in the noiseModel namespace. | |
treeTraversal | |
Internal functions used for traversing trees. | |
Classes | |
struct | _ValuesConstKeyValuePair |
struct | _ValuesKeyValuePair |
class | AcceleratingScenario |
Accelerating from an arbitrary initial state, with optional rotation. More... | |
class | ActiveSetSolver |
This class implements the active set algorithm for solving convex Programming problems. More... | |
class | AdaptAutoDiff |
The AdaptAutoDiff class uses ceres-style autodiff to adapt a ceres-style Function evaluation, i.e., a function FUNCTOR that defines an operator template<typename T> bool operator()(const T* const, const T* const, T* predicted) const; For now only binary operators are supported. More... | |
struct | additive_group_tag |
class | AHRS |
class | AHRSFactor |
class | AlgebraicDecisionTree |
Algebraic Decision Trees fix the range to double Just has some nice constructors and some syntactic sugar TODO: consider eliminating this class altogether? More... | |
class | AllDiff |
General AllDiff constraint Returns 1 if values for all keys are different, 0 otherwise DiscreteFactors are all awkward in that they have to store two types of keys: for each variable we have a Key and an Key. More... | |
class | AntiFactor |
class | Assignment |
An assignment from labels to value index (size_t). More... | |
class | AttitudeFactor |
class | BatchFixedLagSmoother |
class | BayesNet |
A BayesNet is a tree of conditionals, stored in elimination order. More... | |
class | BayesTree |
class | BayesTreeCliqueBase |
This is the base class for BayesTree cliques. More... | |
struct | BayesTreeCliqueData |
store all the sizes More... | |
struct | BayesTreeCliqueStats |
clique statistics More... | |
class | BayesTreeOrphanWrapper |
struct | Bearing |
struct | Bearing< Pose2, T > |
struct | Bearing< Pose3, Point3 > |
struct | Bearing< Pose3, Pose3 > |
struct | BearingFactor |
struct | BearingRange |
Bearing-Range product for a particular A1,A2 combination will use the functors above to create a similar functor of type A1*A2 -> pair<Bearing::return_type,Range::return_type> For example BearingRange<Pose2,Point2>(pose,point) will return pair<Rot2,double> and BearingRange<Pose3,Point3>(pose,point) will return pair<Unit3,double> More... | |
class | BearingRangeFactor |
class | BearingS2 |
class | BetweenConstraint |
Binary between constraint - forces between to a given value This constraint requires the underlying type to a Lie type. More... | |
class | BetweenFactor |
class | BetweenFactorEM |
class | BiasedGPSFactor |
class | BinaryAllDiff |
Binary AllDiff constraint Returns 1 if values for two keys are different, 0 otherwise DiscreteFactors are all awkward in that they have to store two types of keys: for each variable we have a Index and an Index. More... | |
struct | BinaryJacobianFactor |
A binary JacobianFactor specialization that uses fixed matrix math for speed. More... | |
class | BinarySumExpression |
A BinarySumExpression is a specialization of Expression that adds two expressions together It optimizes the Jacobian calculation for this specific case. More... | |
class | BlockJacobiPreconditioner |
struct | BlockJacobiPreconditionerParameters |
struct | BoundingConstraint1 |
struct | BoundingConstraint2 |
Binary scalar inequality constraint, with a similar value() function to implement for specific systems. More... | |
class | BTree |
class | Cal3_S2 |
class | Cal3_S2Stereo |
class | Cal3Bundler |
class | Cal3DS2 |
class | Cal3DS2_Base |
class | Cal3Unified |
class | CalibratedCamera |
struct | CameraProjectionMatrix |
Create a 3*4 camera projection matrix from calibration and pose. More... | |
class | CameraSet |
A set of cameras, all with their own calibration. More... | |
struct | CGState |
class | CheiralityException |
class | CholeskyFailed |
Indicate Cholesky factorization failure. More... | |
class | ClusterTree |
A cluster-tree is associated with a factor graph and is defined as in Koller-Friedman: each node k represents a subset \( C_k \sub X \), and the tree is family preserving, in that each factor \( f_i \) is associated with a single cluster and \( scope(f_i) \sub C_k \). More... | |
class | CombinedImuFactor |
class | compose_key_visitor |
class | ConcurrentBatchFilter |
A Levenberg-Marquardt Batch Filter that implements the Concurrent Filtering and Smoother interface. More... | |
class | ConcurrentBatchFilterResult |
class | ConcurrentBatchSmoother |
A Levenberg-Marquardt Batch Smoother that implements the Concurrent Filtering and Smoother interface. More... | |
class | ConcurrentBatchSmootherResult |
class | ConcurrentFilter |
The interface for the 'Filter' portion of the Concurrent Filtering and Smoother architecture. More... | |
class | ConcurrentIncrementalFilter |
An iSAM2-based Batch Filter that implements the Concurrent Filtering and Smoother interface. More... | |
class | ConcurrentIncrementalSmoother |
A Levenberg-Marquardt Batch Smoother that implements the Concurrent Filtering and Smoother interface. More... | |
class | ConcurrentMap |
class | ConcurrentSmoother |
The interface for the 'Smoother' portion of the Concurrent Filtering and Smoother architecture. More... | |
class | Conditional |
TODO: Update comments. More... | |
class | ConjugateGradientParameters |
parameters for the conjugate gradient method More... | |
struct | const_selector |
Helper class that uses templates to select between two types based on whether TEST_TYPE is const or not. More... | |
struct | const_selector< BASIC_TYPE, BASIC_TYPE, AS_NON_CONST, AS_CONST > |
Specialization for the non-const version. More... | |
struct | const_selector< const BASIC_TYPE, BASIC_TYPE, AS_NON_CONST, AS_CONST > |
Specialization for the const version. More... | |
class | ConstantTwistScenario |
Scenario with constant twist 3D trajectory. More... | |
class | Constraint |
Base class for discrete probabilistic factors The most general one is the derived DecisionTreeFactor. More... | |
struct | ConstructorTraversalData |
class | CRefCallAddCopy |
Helper. More... | |
class | CRefCallPushBack |
Helper. More... | |
class | CSP |
Constraint Satisfaction Problem class A specialization of a DiscreteFactorGraph. More... | |
class | Cyclic |
Cyclic group of order N. More... | |
class | DecisionTree |
Decision Tree L = label for variables Y = function range (any algebra), e.g., bool, int, double. More... | |
class | DecisionTreeFactor |
A discrete probabilistic factor. More... | |
class | DeltaFactor |
DeltaFactor: relative 2D measurement between Pose2 and Point2. More... | |
class | DeltaFactorBase |
DeltaFactorBase: relative 2D measurement between Pose2 and Point2, with Basenodes. More... | |
class | DGroundConstraint |
Ground constraint: forces the robot to be upright (no roll, pitch), a fixed height, and no velocity in z direction Dim: 4. More... | |
class | DHeightPrior |
Forces the value of the height in a PoseRTV to a specific value Dim: 1. More... | |
class | DirectProduct |
class | DirectSum |
Template to construct the direct sum of two additive groups Assumes existence of three additive operators for both groups. More... | |
class | DiscreteBayesNet |
A Bayes net made from linear-Discrete densities. More... | |
class | DiscreteBayesTree |
A Bayes tree representing a Discrete density. More... | |
class | DiscreteBayesTreeClique |
A clique in a DiscreteBayesTree. More... | |
class | DiscreteConditional |
Discrete Conditional Density Derives from DecisionTreeFactor. More... | |
class | DiscreteEliminationTree |
class | DiscreteEulerPoincareHelicopter |
Implement the Discrete Euler-Poincare' equation: More... | |
class | DiscreteFactor |
Base class for discrete probabilistic factors The most general one is the derived DecisionTreeFactor. More... | |
class | DiscreteFactorGraph |
A Discrete Factor Graph is a factor graph where all factors are Discrete, i.e. More... | |
class | DiscreteJunctionTree |
struct | DiscreteKeys |
DiscreteKeys is a set of keys that can be assembled using the & operator. More... | |
class | DiscreteMarginals |
A class for computing marginals of variables in a DiscreteFactorGraph. More... | |
class | DoglegOptimizer |
This class performs Dogleg nonlinear optimization. More... | |
struct | DoglegOptimizerImpl |
This class contains the implementation of the Dogleg algorithm. More... | |
class | DoglegParams |
Parameters for Levenberg-Marquardt optimization. More... | |
class | Domain |
Domain restriction constraint. More... | |
class | DRollPrior |
Forces the roll to a particular value - useful for flying robots Implied value is zero Dim: 1. More... | |
class | DSF |
class | DSFBase |
class | DSFMap |
class | DSFVector |
class | Dummy |
class | DummyFactor |
class | DummyPreconditioner |
struct | DummyPreconditionerParameters |
class | DynamicValuesMismatched |
class | EliminatableClusterTree |
A cluster-tree that eliminates to a Bayes tree. More... | |
class | EliminateableFactorGraph |
EliminateableFactorGraph is a base class for factor graphs that contains elimination algorithms. More... | |
struct | EliminationData |
struct | EliminationTraits |
Traits class for eliminateable factor graphs, specifies the types that result from elimination, etc. More... | |
struct | EliminationTraits< DiscreteFactorGraph > |
struct | EliminationTraits< GaussianFactorGraph > |
struct | EliminationTraits< SymbolicFactorGraph > |
class | EliminationTree |
An elimination tree is a data structure used intermediately during elimination. More... | |
class | EqualityFactorGraph |
Collection of all Linear Equality constraints Ax=b of a Programming problem as a Factor Graph. More... | |
struct | equals |
Template to create a binary predicate. More... | |
struct | equals_star |
Binary predicate on shared pointers. More... | |
class | EquivInertialNavFactor_GlobalVel |
class | EquivInertialNavFactor_GlobalVel_NoBias |
class | Errors |
vector of errors More... | |
class | EssentialMatrix |
An essential matrix is like a Pose3, except with translation up to scale It is named after the 3*3 matrix aEb = [aTb]x aRb from computer vision, but here we choose instead to parameterize it as a (Rot3,Unit3) pair. More... | |
class | EssentialMatrixConstraint |
class | EssentialMatrixFactor |
Factor that evaluates epipolar error p'Ep for given essential matrix. More... | |
class | EssentialMatrixFactor2 |
Binary factor that optimizes for E and inverse depth d: assumes measurement in image 2 is perfect, and returns re-projection error in image 1. More... | |
class | EssentialMatrixFactor3 |
Binary factor that optimizes for E and inverse depth d: assumes measurement in image 2 is perfect, and returns re-projection error in image 1 This version takes an extrinsic rotation to allow for omni-directional rigs. More... | |
class | Expression |
Expression class that supports automatic differentiation. More... | |
class | ExpressionFactor |
Factor that supports arbitrary expressions via AD. More... | |
class | ExpressionFactor2 |
Binary specialization of ExpressionFactor meant as a base class for binary factors. More... | |
class | ExpressionFactorGraph |
Factor graph that supports adding ExpressionFactors directly. More... | |
class | ExtendedKalmanFilter |
This is a generic Extended Kalman Filter class implemented using nonlinear factors. More... | |
class | Factor |
This is the base class for all factor types. More... | |
class | FactorGraph |
A factor graph is a bipartite graph with factor nodes connected to variable nodes. More... | |
class | FastList |
class | FastMap |
class | FastSet |
struct | FixedDimension |
Give fixed size dimension of a type, fails at compile time if dynamic. More... | |
class | FixedLagSmoother |
class | FixedLagSmootherKeyTimestampMap |
class | FixedLagSmootherKeyTimestampMapValue |
class | FixedLagSmootherResult |
class | FixedVector |
Fixed size vectors - compatible with boost vectors, but with compile-type size checking. More... | |
class | FullIMUFactor |
Class that represents integrating IMU measurements over time for dynamic systems This factor has dimension 9, with a built-in constraint for velocity modeling. More... | |
class | G_x1 |
Helper class that computes the derivative of f w.r.t. More... | |
class | GaussianBayesNet |
A Bayes net made from linear-Gaussian densities. More... | |
class | GaussianBayesTree |
A Bayes tree representing a Gaussian density. More... | |
class | GaussianBayesTreeClique |
A clique in a GaussianBayesTree. More... | |
class | GaussianConditional |
A conditional Gaussian functions as the node in a Bayes network It has a set of parents y,z, etc. More... | |
class | GaussianDensity |
A Gaussian density. More... | |
class | GaussianEliminationTree |
class | GaussianFactor |
An abstract virtual base class for JacobianFactor and HessianFactor. More... | |
class | GaussianFactorGraph |
A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e. More... | |
class | GaussianFactorGraphSystem |
System class needed for calling preconditionedConjugateGradient. More... | |
class | GaussianISAM |
class | GaussianJunctionTree |
class | GaussMarkov1stOrderFactor |
class | GaussNewtonOptimizer |
This class performs Gauss-Newton nonlinear optimization. More... | |
class | GaussNewtonParams |
Parameters for Gauss-Newton optimization, inherits from NonlinearOptimizationParams. More... | |
class | GeneralSFMFactor |
class | GeneralSFMFactor2 |
Non-linear factor for a constraint derived from a 2D measurement. More... | |
class | GenericProjectionFactor |
class | GenericStereoFactor |
class | GenericValue |
Wraps any type T so it can play as a Value. More... | |
class | GPSFactor |
class | GPSFactor2 |
struct | GraphvizFormatting |
Formatting options when saving in GraphViz format using NonlinearFactorGraph::saveGraph. More... | |
struct | group_tag |
tag to assert a type is a group More... | |
struct | HasBearing |
struct | HasRange |
struct | HasTestablePrereqs |
Requirements on type to pass it to Testable template below. More... | |
class | HessianFactor |
A Gaussian factor using the canonical parameters (information form) More... | |
class | IMUFactor |
Class that represents integrating IMU measurements over time for dynamic systems Templated to allow for different key types, but variables all assumed to be PoseRTV. More... | |
class | ImuFactor |
class | ImuFactor2 |
class | InconsistentEliminationRequested |
An inference algorithm was called with inconsistent arguments. More... | |
class | IncrementalFixedLagSmoother |
This is a base class for the various HMF2 implementations. More... | |
class | IndeterminantLinearSystemException |
Thrown when a linear system is ill-posed. More... | |
class | IndexPair |
Small utility class for representing a wrappable pairs of ints. More... | |
class | InequalityFactorGraph |
Collection of all Linear Inequality constraints Ax-b <= 0 of a Programming problem as a Factor Graph. More... | |
class | InertialNavFactor_GlobalVelocity |
class | InfeasibleInitialValues |
An exception indicating that the provided initial value is infeasible Also used to inzdicatethat the noise model dimension passed into a JacobianFactor has a different dimensionality than the factor. More... | |
class | InfeasibleOrUnboundedProblem |
struct | InitializePose3 |
class | InvalidArgumentThreadsafe |
Thread-safe invalid argument exception. More... | |
class | InvalidDenseElimination |
class | InvalidMatrixBlock |
An exception indicating that a matrix block passed into a JacobianFactor has a different dimensionality than the factor. More... | |
class | InvalidNoiseModel |
An exception indicating that the noise model dimension passed into a JacobianFactor has a different dimensionality than the factor. More... | |
class | InvDepthFactor3 |
Ternary factor representing a visual measurement that includes inverse depth. More... | |
class | InvDepthFactorVariant1 |
Binary factor representing a visual measurement using an inverse-depth parameterization. More... | |
class | InvDepthFactorVariant2 |
Binary factor representing a visual measurement using an inverse-depth parameterization. More... | |
class | InvDepthFactorVariant3a |
Binary factor representing the first visual measurement using an inverse-depth parameterization. More... | |
class | InvDepthFactorVariant3b |
Ternary factor representing a visual measurement using an inverse-depth parameterization. More... | |
class | ISAM |
A Bayes tree with an update methods that implements the iSAM algorithm. More... | |
class | ISAM2 |
class | ISAM2Clique |
Specialized Clique structure for ISAM2, incorporating caching and gradient contribution TODO: more documentation. More... | |
struct | ISAM2DoglegParams |
struct | ISAM2GaussNewtonParams |
struct | ISAM2Params |
struct | ISAM2Result |
class | IsGroup |
Group Concept. More... | |
class | IsLieGroup |
Lie Group Concept. More... | |
class | IsTestable |
class | IsVectorSpace |
Vector Space concept. More... | |
class | IterativeOptimizationParameters |
parameters for iterative linear solvers More... | |
class | IterativeSolver |
Base class for Iterative Solvers like SubgraphSolver. More... | |
class | JacobianFactor |
A Gaussian factor in the squared-error form. More... | |
class | JacobianFactorQ |
JacobianFactor for Schur complement that uses Q noise model. More... | |
class | JacobianFactorQR |
JacobianFactor for Schur complement that uses Q noise model. More... | |
class | JacobianFactorSVD |
JacobianFactor for Schur complement that uses the "Nullspace Trick" by Mourikis. More... | |
class | JointMarginal |
A class to store and access a joint marginal, returned from Marginals::jointMarginalCovariance and Marginals::jointMarginalInformation. More... | |
class | JunctionTree |
class | KalmanFilter |
Kalman Filter class. More... | |
class | KeyInfo |
Handy data structure for iterative solvers. More... | |
struct | KeyInfoEntry |
Handy data structure for iterative solvers key to (index, dimension, start) More... | |
class | LabeledSymbol |
Customized version of gtsam::Symbol for multi-robot use. More... | |
class | LevenbergMarquardtOptimizer |
This class performs Levenberg-Marquardt nonlinear optimization. More... | |
class | LevenbergMarquardtParams |
Parameters for Levenberg-Marquardt optimization. More... | |
struct | lie_group_tag |
tag to assert a type is a Lie group More... | |
struct | LieGroup |
A CRTP helper class that implements Lie group methods Prerequisites: methods operator*, inverse, and AdjointMap, as well as a ChartAtOrigin struct that will be used to define the manifold Chart To use, simply derive, but also say "using LieGroup<Class,N>::inverse" For derivative math, see doc/math.pdf. More... | |
class | LinearContainerFactor |
Dummy version of a generic linear factor to be injected into a nonlinear factor graph. More... | |
class | LinearCost |
This class defines a linear cost function c'x which is a JacobianFactor with only one row. More... | |
class | LinearEquality |
This class defines a linear equality constraints, inheriting JacobianFactor with the special Constrained noise model. More... | |
class | LinearInequality |
This class defines a linear inequality constraint Ax-b <= 0, inheriting JacobianFactor with the special Constrained noise model. More... | |
class | LinearizedGaussianFactor |
A base factor class for the Jacobian and Hessian linearized factors. More... | |
class | LinearizedHessianFactor |
A factor that takes a linear, Hessian factor and inserts it into a nonlinear graph. More... | |
class | LinearizedJacobianFactor |
A factor that takes a linear, Jacobian factor and inserts it into a nonlinear graph. More... | |
class | ListOfOneContainer |
A helper class that behaves as a container with one element, and works with boost::range. More... | |
struct | LP |
Data structure of a Linear Program. More... | |
class | LPInitSolver |
This LPInitSolver implements the strategy in Matlab: http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9 Solve for x and y: min y st Ax = b Cx - y <= d where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem. More... | |
struct | LPPolicy |
Policy for ActivetSetSolver to solve Linear Programming. More... | |
class | MagFactor |
Factor to estimate rotation given magnetometer reading This version uses model measured bM = scale * bRn * direction + bias and assumes scale, direction, and the bias are given. More... | |
class | MagFactor1 |
Factor to estimate rotation given magnetometer reading This version uses model measured bM = scale * bRn * direction + bias and assumes scale, direction, and the bias are given. More... | |
class | MagFactor2 |
Factor to calibrate local Earth magnetic field as well as magnetometer bias This version uses model measured bM = bRn * nM + bias and optimizes for both nM and the bias, where nM is in units defined by magnetometer. More... | |
class | MagFactor3 |
Factor to calibrate local Earth magnetic field as well as magnetometer bias This version uses model measured bM = scale * bRn * direction + bias and optimizes for both scale, direction, and the bias. More... | |
struct | MakeJacobian |
: meta-function to generate Jacobian More... | |
struct | MakeOptionalJacobian |
: meta-function to generate JacobianTA optional reference Used mainly by Expressions More... | |
struct | manifold_tag |
tag to assert a type is a manifold More... | |
class | ManifoldPreintegration |
IMU pre-integration on NavSatet manifold. More... | |
class | MarginalizeNonleafException |
Thrown when requesting to marginalize out variables from ISAM2 that are not leaves. More... | |
class | Marginals |
A class for computing Gaussian marginals of variables in a NonlinearFactorGraph. More... | |
class | Mechanization_bRn2 |
class | MetisIndex |
The MetisIndex class converts a factor graph into the Compressed Sparse Row format for use in METIS algorithms. More... | |
struct | multiplicative_group_tag |
Group operator syntax flavors. More... | |
struct | MultiplyWithInverse |
Functor that implements multiplication of a vector b with the inverse of a matrix A. More... | |
struct | MultiplyWithInverseFunction |
Functor that implements multiplication with the inverse of a matrix, itself the result of a function f. More... | |
class | MultiProjectionFactor |
class | NavState |
Navigation state: Pose (rotation, translation) + velocity NOTE(frank): it does not make sense to make this a Lie group, but it is a 9D manifold. More... | |
class | NoiseModelFactor |
A nonlinear sum-of-squares factor with a zero-mean noise model implementing the density \( P(z|x) \propto exp -0.5*|z-h(x)|^2_C \) Templated on the parameter type X and the values structure Values There is no return type specified for h(x). More... | |
class | NoiseModelFactor1 |
A convenient base class for creating your own NoiseModelFactor with 1 variable. More... | |
class | NoiseModelFactor2 |
A convenient base class for creating your own NoiseModelFactor with 2 variables. More... | |
class | NoiseModelFactor3 |
A convenient base class for creating your own NoiseModelFactor with 3 variables. More... | |
class | NoiseModelFactor4 |
A convenient base class for creating your own NoiseModelFactor with 4 variables. More... | |
class | NoiseModelFactor5 |
A convenient base class for creating your own NoiseModelFactor with 5 variables. More... | |
class | NoiseModelFactor6 |
A convenient base class for creating your own NoiseModelFactor with 6 variables. More... | |
class | NoMatchFoundForFixed |
class | NonlinearClusterTree |
class | NonlinearConjugateGradientOptimizer |
An implementation of the nonlinear CG method using the template below. More... | |
class | NonlinearEquality |
An equality factor that forces either one variable to a constant, or a set of variables to be equal to each other. More... | |
class | NonlinearEquality1 |
Simple unary equality constraint - fixes a value for a variable. More... | |
class | NonlinearEquality2 |
Simple binary equality constraint - this constraint forces two factors to be the same. More... | |
class | NonlinearFactor |
Nonlinear factor base class. More... | |
class | NonlinearFactorGraph |
A non-linear factor graph is a graph of non-Gaussian, i.e. More... | |
class | NonlinearISAM |
Wrapper class to manage ISAM in a nonlinear context. More... | |
class | NonlinearOptimizer |
This is the abstract interface for classes that can optimize for the maximum-likelihood estimate of a NonlinearFactorGraph. More... | |
class | NonlinearOptimizerParams |
The common parameters for Nonlinear optimizers. More... | |
class | OdometryFactorBase |
OdometryFactorBase: Pose2 odometry, with Basenodes. More... | |
class | OptionalJacobian |
OptionalJacobian is an Eigen::Ref like class that can take be constructed using either a fixed size or dynamic Eigen matrix. More... | |
class | OptionalJacobian< Eigen::Dynamic, Eigen::Dynamic > |
class | Ordering |
class | ordering_key_visitor |
class | OrientedPlane3 |
Represents an infinite plane in 3D, which is composed of a planar normal and its perpendicular distance to the origin. More... | |
class | OrientedPlane3DirectionPrior |
class | OrientedPlane3Factor |
Factor to measure a planar landmark from a given pose. More... | |
class | OutOfRangeThreadsafe |
Thread-safe out of range exception. More... | |
class | PartialPriorFactor |
A class for a soft partial prior on any Lie type, with a mask over Expmap parameters. More... | |
class | PCGSolver |
A virtual base class for the preconditioned conjugate gradient solver. More... | |
struct | PCGSolverParameters |
Parameters for PCG. More... | |
class | PendulumFactor1 |
This class implements the first constraint. More... | |
class | PendulumFactor2 |
This class implements the second constraint the. More... | |
class | PendulumFactorPk |
This class implements the first position-momentum update rule p_k = -D_1 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)+mgrh(1-\alpha)\,\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) = (1/h)mr^2 (q_{k+1}-q_k) + mgrh(1-alpha) sin ((1-alpha)q_k+\alpha q_{k+1}) More... | |
class | PendulumFactorPk1 |
This class implements the second position-momentum update rule p_k1 = D_2 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)-mgrh\alpha\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) = (1/h)mr^2 (q_{k+1}-q_k) - mgrh alpha sin ((1-alpha)q_k+\alpha q_{k+1}) More... | |
class | PinholeBase |
class | PinholeBaseK |
class | PinholeCamera |
class | PinholePose |
class | PinholeSet |
PinholeSet: triangulates point and keeps an estimate of it around. More... | |
class | Point2 |
class | Point3 |
class | Pose2 |
class | Pose3 |
class | Pose3AttitudeFactor |
class | Pose3Upright |
class | PoseBetweenFactor |
class | PoseConcept |
Pose Concept A must contain a translation and a rotation, with each structure accessable directly and a type provided for each. More... | |
class | PosePriorFactor |
class | PoseRotationPrior |
class | PoseRTV |
Robot state for use with IMU measurements. More... | |
class | PoseTranslationPrior |
A prior on the translation part of a pose. More... | |
class | Potentials |
A base class for both DiscreteFactor and DiscreteConditional. More... | |
class | Preconditioner |
struct | PreconditionerParameters |
class | PredecessorMap |
Map from variable key to parent key. More... | |
class | PreintegratedAhrsMeasurements |
PreintegratedAHRSMeasurements accumulates (integrates) the Gyroscope measurements (rotation rates) and the corresponding covariance matrix. More... | |
class | PreintegratedCombinedMeasurements |
class | PreintegratedImuMeasurements |
class | PreintegratedRotation |
PreintegratedRotation is the base class for all PreintegratedMeasurements classes (in AHRSFactor, ImuFactor, and CombinedImuFactor). More... | |
struct | PreintegratedRotationParams |
Parameters for pre-integration: Usage: Create just a single Params and pass a shared pointer to the constructor. More... | |
class | PreintegrationBase |
PreintegrationBase is the base class for PreintegratedMeasurements (in ImuFactor) and CombinedPreintegratedMeasurements (in CombinedImuFactor). More... | |
struct | PreintegrationParams |
Parameters for pre-integration: Usage: Create just a single Params and pass a shared pointer to the constructor. More... | |
class | PriorFactor |
class | ProductLieGroup |
Template to construct the product Lie group of two other Lie groups Assumes Lie group structure for G and H. More... | |
class | ProjectionFactorPPP |
class | ProjectionFactorPPPC |
struct | QP |
Struct contains factor graphs of a Quadratic Programming problem. More... | |
class | QPInitSolver |
This class finds a feasible solution for a QP problem. More... | |
struct | QPPolicy |
Policy for ActivetSetSolver to solve Linear Programming. More... | |
class | QPSParser |
class | QPSParserException |
struct | Range |
struct | Range< CalibratedCamera, T > |
struct | Range< PinholeCamera< Calibration >, T > |
struct | Range< Point3, Point3 > |
struct | Range< Pose2, T > |
struct | Range< Pose3, T > |
struct | Range< PoseRTV, PoseRTV > |
struct | Range< SimpleCamera, T > |
class | RangeFactor |
class | RangeFactorWithTransform |
class | Reconstruction |
Implement the Reconstruction equation: \( g_{k+1} = g_k \exp (h\xi_k) \), where \( h \): timestep (parameter) \( g_{k+1}, g_{k} \): poses at the current and the next timestep \( \xi_k \): the body-fixed velocity (Lie algebra) It is somewhat similar to BetweenFactor, but treats the body-fixed velocity \( \xi_k \) as a variable. More... | |
struct | RedirectCout |
For Python str(). More... | |
class | RefCallPushBack |
Helper. More... | |
class | ReferenceFrameFactor |
A constraint between two landmarks in separate maps Templated on: Point : Type of landmark Transform : Transform variable class. More... | |
class | RegularHessianFactor |
class | RegularImplicitSchurFactor |
RegularImplicitSchurFactor. More... | |
class | RegularJacobianFactor |
JacobianFactor with constant sized blocks Provides raw memory access versions of linear operator. More... | |
class | RelativeElevationFactor |
Binary factor for a relative elevation. More... | |
struct | Reshape |
Reshape functor. More... | |
struct | Reshape< M, M, InOptions, M, M, InOptions > |
Reshape specialization that does nothing as shape stays the same (needed to not be ambiguous for square input equals square output) More... | |
struct | Reshape< M, N, InOptions, M, N, InOptions > |
Reshape specialization that does nothing as shape stays the same. More... | |
struct | Reshape< N, M, InOptions, M, N, InOptions > |
Reshape specialization that does transpose. More... | |
class | Rot2 |
class | Rot3 |
class | Rot3AttitudeFactor |
class | RotateDirectionsFactor |
Factor on unknown rotation iRc that relates two directions c Directions provide less constraints than a full rotation. More... | |
class | RotateFactor |
Factor on unknown rotation iRC that relates two incremental rotations c1Rc2 = iRc' * i1Ri2 * iRc Which we can write (see doc/math.lyx) e^[z] = iRc' * e^[p] * iRc = e^([iRc'*p]) with z and p measured and predicted angular velocities, and hence p = iRc * z. More... | |
class | RuntimeErrorThreadsafe |
Thread-safe runtime error exception. More... | |
class | Sampler |
Sampling structure that keeps internal random number generators for diagonal distributions specified by NoiseModel. More... | |
class | ScalarMultiplyExpression |
A ScalarMultiplyExpression is a specialization of Expression that multiplies with a scalar It optimizes the Jacobian calculation for this specific case. More... | |
class | Scatter |
Scatter is an intermediate data structure used when building a HessianFactor incrementally, to get the keys in the right order. More... | |
class | Scenario |
Simple trajectory simulator. More... | |
class | ScenarioRunner |
class | Scheduler |
Scheduler class Creates one variable for each student, and three variables for each of the student's areas, for a total of 4*nrStudents variables. More... | |
class | SDGraph |
SDGraph is undirected graph with variable keys and double edge weights. More... | |
struct | SfM_data |
Define the structure for SfM data. More... | |
struct | SfM_Track |
Define the structure for the 3D points. More... | |
class | SGraph |
class | Signature |
Signature for a discrete conditional density, used to construct conditionals. More... | |
class | SimpleCamera |
class | SimPolygon2D |
class | SimPolygon2DVector |
class | SimWall2D |
class | SimWall2DVector |
class | SingleValue |
SingleValue constraint. More... | |
struct | SlotEntry |
One SlotEntry stores the slot index for a variable, as well its dim. More... | |
class | SmartFactorBase |
Base class for smart factors This base class has no internal point, but it has a measurement, noise model and an optional sensor pose. More... | |
class | SmartProjectionFactor |
SmartProjectionFactor: triangulates point and keeps an estimate of it around. More... | |
struct | SmartProjectionParams |
class | SmartProjectionPoseFactor |
class | SmartRangeFactor |
class | SmartStereoProjectionFactor |
SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around. More... | |
class | SmartStereoProjectionPoseFactor |
class | SO3 |
True SO(3), i.e., 3*3 matrix subgroup We guarantee (all but first) constructors only generate from sub-manifold. More... | |
class | StereoCamera |
class | StereoCheiralityException |
class | StereoPoint2 |
class | Subgraph |
class | SubgraphBuilder |
struct | SubgraphBuilderParameters |
class | SubgraphPreconditioner |
Subgraph conditioner class, as explained in the RSS 2010 submission. More... | |
struct | SubgraphPreconditionerParameters |
class | SubgraphSolver |
This class implements the linear SPCG solver presented in Dellaert et al in IROS'10. More... | |
struct | SubgraphSolverParameters |
class | Symbol |
Character and index key used to refer to variables. More... | |
class | SymbolicBayesNet |
Symbolic Bayes Net. More... | |
class | SymbolicBayesTree |
A Bayes tree that represents the connectivity between variables but is not associated with any probability functions. More... | |
class | SymbolicBayesTreeClique |
A clique in a SymbolicBayesTree. More... | |
class | SymbolicConditional |
SymbolicConditional is a conditional with keys but no probability data, produced by symbolic elimination of SymbolicFactor. More... | |
class | SymbolicEliminationTree |
class | SymbolicFactor |
SymbolicFactor represents a symbolic factor that specifies graph topology but is not associated with any numerical function. More... | |
class | SymbolicFactorGraph |
Symbolic Factor Graph. More... | |
class | SymbolicISAM |
class | SymbolicJunctionTree |
class | SymmetricBlockMatrix |
class | System |
Helper class encapsulating the combined system |Ax-b_|^2 Needed to run Conjugate Gradients on matrices. More... | |
class | TangentPreintegration |
Integrate on the 9D tangent space of the NavState manifold. More... | |
class | TbbOpenMPMixedScope |
An object whose scope defines a block where TBB and OpenMP parallelism are mixed. More... | |
struct | Testable |
A helper that implements the traits interface for GTSAM types. More... | |
class | ThreadsafeException |
Base exception type that uses tbb_exception if GTSAM is compiled with TBB. More... | |
class | TOAFactor |
A "Time of Arrival" factor - so little code seems hardly worth it :-) More... | |
struct | traits |
A manifold defines a space in which there is a notion of a linear tangent space that can be centered around a given point on the manifold. More... | |
struct | traits< BearingFactor< A1, A2, T > > |
traits More... | |
struct | traits< BearingRange< A1, A2 > > |
struct | traits< BearingRangeFactor< A1, A2, B, R > > |
traits More... | |
struct | traits< BetweenConstraint< VALUE > > |
traits More... | |
struct | traits< BetweenFactor< VALUE > > |
traits More... | |
struct | traits< BinaryJacobianFactor< M, N1, N2 > > |
struct | traits< Cal3_S2 > |
struct | traits< Cal3_S2Stereo > |
struct | traits< Cal3Bundler > |
struct | traits< Cal3DS2 > |
struct | traits< Cal3Unified > |
struct | traits< CalibratedCamera > |
struct | traits< CameraSet< CAMERA > > |
struct | traits< ConcurrentBatchFilter > |
traits More... | |
struct | traits< ConcurrentBatchSmoother > |
traits More... | |
struct | traits< ConcurrentIncrementalFilter > |
traits More... | |
struct | traits< ConcurrentIncrementalSmoother > |
traits More... | |
struct | traits< const Cal3_S2 > |
struct | traits< const Cal3_S2Stereo > |
struct | traits< const Cal3Bundler > |
struct | traits< const Cal3DS2 > |
struct | traits< const Cal3Unified > |
struct | traits< const CalibratedCamera > |
struct | traits< const CameraSet< CAMERA > > |
struct | traits< const EssentialMatrix > |
struct | traits< const OrientedPlane3 > |
struct | traits< const PinholeCamera< Calibration > > |
struct | traits< const PinholePose< CALIBRATION > > |
struct | traits< const PinholeSet< CAMERA > > |
struct | traits< const Point3 > |
struct | traits< const Pose2 > |
struct | traits< const Pose3 > |
struct | traits< const Rot2 > |
struct | traits< const Rot3 > |
struct | traits< const SimpleCamera > |
struct | traits< const SO3 > |
struct | traits< const StereoCamera > |
struct | traits< const StereoPoint2 > |
struct | traits< const Unit3 > |
struct | traits< Cyclic< N > > |
Define cyclic group to be a model of the Additive Group concept. More... | |
struct | traits< DecisionTreeFactor > |
struct | traits< DirectProduct< G, H > > |
struct | traits< DirectSum< G, H > > |
struct | traits< DiscreteBayesNet > |
struct | traits< DiscreteConditional > |
struct | traits< DiscreteFactor > |
struct | traits< DiscreteFactor::Values > |
struct | traits< DiscreteFactorGraph > |
traits More... | |
struct | traits< double > |
double More... | |
struct | traits< Eigen::Matrix< double, -1, -1, Options, MaxRows, MaxCols > > |
struct | traits< Eigen::Matrix< double, -1, 1, Options, MaxRows, MaxCols > > |
struct | traits< Eigen::Matrix< double, 1, -1, Options, MaxRows, MaxCols > > |
struct | traits< Eigen::Matrix< double, M, N, Options, MaxRows, MaxCols > > |
struct | traits< EqualityFactorGraph > |
traits More... | |
struct | traits< Errors > |
traits More... | |
struct | traits< EssentialMatrix > |
struct | traits< ExpressionFactor< T > > |
traits More... | |
struct | traits< float > |
float More... | |
struct | traits< GaussianBayesNet > |
traits More... | |
struct | traits< GaussianBayesTree > |
traits More... | |
struct | traits< GaussianConditional > |
traits More... | |
struct | traits< GaussianFactor > |
traits More... | |
struct | traits< GaussianFactorGraph > |
traits More... | |
struct | traits< GaussMarkov1stOrderFactor< VALUE > > |
traits More... | |
struct | traits< GeneralSFMFactor2< CALIBRATION > > |
struct | traits< GeneralSFMFactor< CAMERA, LANDMARK > > |
struct | traits< GenericProjectionFactor< POSE, LANDMARK, CALIBRATION > > |
traits More... | |
struct | traits< GenericStereoFactor< T1, T2 > > |
traits More... | |
struct | traits< GenericValue< ValueType > > |
struct | traits< HessianFactor > |
traits More... | |
struct | traits< imuBias::ConstantBias > |
struct | traits< ImuFactor > |
struct | traits< ImuFactor2 > |
struct | traits< InequalityFactorGraph > |
traits More... | |
struct | traits< InertialNavFactor_GlobalVelocity< POSE, VELOCITY, IMUBIAS > > |
traits More... | |
struct | traits< ISAM2 > |
traits More... | |
struct | traits< JacobianFactor > |
traits More... | |
struct | traits< JacobianFactorQ< D, ZDim > > |
struct | traits< Key > |
struct | traits< LabeledSymbol > |
traits More... | |
struct | traits< LinearContainerFactor > |
struct | traits< LinearCost > |
traits More... | |
struct | traits< LinearEquality > |
traits More... | |
struct | traits< LinearInequality > |
traits More... | |
struct | traits< LinearizedHessianFactor > |
traits More... | |
struct | traits< LinearizedJacobianFactor > |
traits More... | |
struct | traits< LP > |
traits More... | |
struct | traits< NavState > |
struct | traits< noiseModel::Constrained > |
struct | traits< noiseModel::Diagonal > |
struct | traits< noiseModel::Gaussian > |
traits More... | |
struct | traits< noiseModel::Isotropic > |
struct | traits< noiseModel::Unit > |
struct | traits< NonlinearEquality1< VALUE > > |
struct | traits< NonlinearEquality2< VALUE > > |
struct | traits< NonlinearEquality< VALUE > > |
struct | traits< NonlinearFactor > |
traits More... | |
struct | traits< NonlinearFactorGraph > |
traits More... | |
struct | traits< Ordering > |
traits More... | |
struct | traits< OrientedPlane3 > |
struct | traits< PinholeCamera< Calibration > > |
struct | traits< PinholePose< CALIBRATION > > |
struct | traits< PinholeSet< CAMERA > > |
struct | traits< Point2 > |
struct | traits< Point3 > |
struct | traits< Pose2 > |
struct | traits< Pose3 > |
struct | traits< Pose3AttitudeFactor > |
traits More... | |
struct | traits< PoseRTV > |
struct | traits< Potentials > |
struct | traits< Potentials::ADT > |
struct | traits< PreintegratedImuMeasurements > |
struct | traits< PreintegratedRotation > |
struct | traits< ProductLieGroup< G, H > > |
struct | traits< ProjectionFactorPPP< POSE, LANDMARK, CALIBRATION > > |
traits More... | |
struct | traits< ProjectionFactorPPPC< POSE, LANDMARK, CALIBRATION > > |
traits More... | |
struct | traits< QUATERNION_TYPE > |
struct | traits< RangeFactor< A1, A2, T > > |
traits More... | |
struct | traits< RangeFactorWithTransform< A1, A2, T > > |
traits More... | |
struct | traits< ReferenceFrameFactor< T1, T2 > > |
traits More... | |
struct | traits< RegularHessianFactor< D > > |
struct | traits< RegularImplicitSchurFactor< CAMERA > > |
struct | traits< Rot2 > |
struct | traits< Rot3 > |
struct | traits< Rot3AttitudeFactor > |
traits More... | |
struct | traits< SimpleCamera > |
struct | traits< SmartProjectionFactor< CAMERA > > |
traits More... | |
struct | traits< SmartProjectionPoseFactor< CALIBRATION > > |
traits More... | |
struct | traits< SmartStereoProjectionFactor > |
traits More... | |
struct | traits< SmartStereoProjectionPoseFactor > |
traits More... | |
struct | traits< SO3 > |
struct | traits< StereoCamera > |
struct | traits< StereoPoint2 > |
struct | traits< Symbol > |
traits More... | |
struct | traits< SymbolicBayesNet > |
traits More... | |
struct | traits< SymbolicBayesTree > |
struct | traits< SymbolicBayesTreeClique > |
traits More... | |
struct | traits< SymbolicConditional > |
traits More... | |
struct | traits< SymbolicEliminationTree > |
traits More... | |
struct | traits< SymbolicFactor > |
traits More... | |
struct | traits< SymbolicFactorGraph > |
traits More... | |
struct | traits< TransformBtwRobotsUnaryFactor< VALUE > > |
traits More... | |
struct | traits< TransformBtwRobotsUnaryFactorEM< VALUE > > |
traits More... | |
struct | traits< Unit3 > |
struct | traits< Values > |
traits More... | |
struct | traits< VariableIndex > |
traits More... | |
struct | traits< VariableSlots > |
traits More... | |
struct | traits< VectorValues > |
traits More... | |
class | TransformBtwRobotsUnaryFactor |
class | TransformBtwRobotsUnaryFactorEM |
class | TriangulationCheiralityException |
Exception thrown by triangulateDLT when landmark is behind one or more of the cameras. More... | |
class | TriangulationFactor |
struct | TriangulationParameters |
class | TriangulationResult |
TriangulationResult is an optional point, along with the reasons why it is invalid. More... | |
class | TriangulationUnderconstrainedException |
Exception thrown by triangulateDLT when SVD returns rank < 3. More... | |
class | Unit3 |
Represents a 3D point on a unit sphere. More... | |
class | Value |
This is the base class for any type to be stored in Values. More... | |
class | ValueCloneAllocator |
class | Values |
A non-templated config holding any types of Manifold-group elements. More... | |
struct | ValuesCastHelper |
struct | ValuesCastHelper< const Value, CastedKeyValuePairType, KeyValuePairType > |
struct | ValuesCastHelper< Value, CastedKeyValuePairType, KeyValuePairType > |
class | ValuesIncorrectType |
class | ValuesKeyAlreadyExists |
class | ValuesKeyDoesNotExist |
struct | ValueWithDefault |
Helper struct that encapsulates a value with a default, this is just used as a member object so you don't have to specify defaults in the class constructor. More... | |
class | VariableIndex |
The VariableIndex class computes and stores the block column structure of a factor graph. More... | |
class | VariableSlots |
A combined factor is assembled as one block of rows for each component factor. More... | |
struct | vector_space_tag |
tag to assert a type is a vector space More... | |
class | VectorValues |
This class represents a collection of vector-valued variables associated each with a unique integer index. More... | |
class | VelocityConstraint |
Constraint to enforce dynamics between the velocities and poses, using a prediction based on a numerical integration flag. More... | |
class | VelocityConstraint3 |
class | VelocityPrior |
Constrains the full velocity of a state to a particular value Useful for enforcing a stationary state Dim: 3. More... | |
class | VerticalBlockMatrix |
class | WhiteNoiseFactor |
Binary factor to estimate parameters of zero-mean Gaussian white noise. More... | |
Typedefs | |
template<typename T > | |
using | FastVector = std::vector< T, typename internal::FastDefaultVectorAllocator< T >::type > |
typedef Eigen::MatrixXd | Matrix |
typedef Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > | MatrixRowMajor |
typedef Eigen::Block< Matrix > | SubMatrix |
typedef Eigen::Block< const Matrix > | ConstSubMatrix |
typedef std::uint64_t | Key |
Integer nonlinear key type. | |
typedef std::uint64_t | FactorIndex |
Integer nonlinear factor index type. | |
typedef ptrdiff_t | DenseIndex |
The index type for Eigen objects. | |
typedef Eigen::VectorXd | Vector |
typedef Eigen::Matrix< double, 1, 1 > | Vector1 |
typedef Eigen::Vector2d | Vector2 |
typedef Eigen::Vector3d | Vector3 |
typedef Eigen::VectorBlock< Vector > | SubVector |
typedef Eigen::VectorBlock< const Vector > | ConstSubVector |
typedef std::pair< Key, size_t > | DiscreteKey |
Key type for discrete conditionals Includes name and cardinality. | |
typedef std::pair< Point2, Point2 > | Point2Pair |
Calculate pose between a vector of 2D point correspondences (p,q) where q = Pose2::transformFrom(p) = t + R*p. | |
typedef std::vector< Point2, Eigen::aligned_allocator< Point2 > > | Point2Vector |
typedef std::pair< Point3, Point3 > | Point3Pair |
typedef std::vector< Pose3 > | Pose3Vector |
typedef Eigen::Quaternion< double, Eigen::DontAlign > | Quaternion |
typedef gtsam::PinholeCamera< gtsam::Cal3_S2 > | PinholeCameraCal3_S2 |
A simple camera class with a Cal3_S2 calibration. | |
typedef std::vector< StereoPoint2 > | StereoPoint2Vector |
typedef FastVector< FactorIndex > | FactorIndices |
Define collection types: | |
typedef FastSet< FactorIndex > | FactorIndexSet |
typedef boost::function< std::string(Key)> | KeyFormatter |
Typedef for a function to format a key, i.e. to convert it to a string. | |
typedef FastVector< Key > | KeyVector |
Define collection type once and for all - also used in wrappers. | |
typedef FastList< Key > | KeyList |
typedef FastSet< Key > | KeySet |
typedef FastMap< Key, int > | KeyGroupMap |
typedef noiseModel::Base::shared_ptr | SharedNoiseModel |
Note, deliberately not in noiseModel namespace. More... | |
typedef noiseModel::Gaussian::shared_ptr | SharedGaussian |
typedef noiseModel::Diagonal::shared_ptr | SharedDiagonal |
typedef noiseModel::Constrained::shared_ptr | SharedConstrained |
typedef noiseModel::Isotropic::shared_ptr | SharedIsotropic |
typedef ManifoldPreintegration | PreintegrationType |
typedef Vector3 | Velocity3 |
Velocity is currently typedef'd to Vector3. More... | |
typedef internal::DoglegState | State |
typedef Expression< double > | Double_ |
typedef Expression< Vector1 > | Vector1_ |
typedef Expression< Vector2 > | Vector2_ |
typedef Expression< Vector3 > | Vector3_ |
typedef Expression< Vector4 > | Vector4_ |
typedef Expression< Vector5 > | Vector5_ |
typedef Expression< Vector6 > | Vector6_ |
typedef Expression< Vector7 > | Vector7_ |
typedef Expression< Vector8 > | Vector8_ |
typedef Expression< Vector9 > | Vector9_ |
typedef FastMap< char, Vector > | ISAM2ThresholdMap |
typedef ISAM2ThresholdMap::value_type | ISAM2ThresholdMapValue |
typedef NonlinearOptimizerParams | SuccessiveLinearizationParams |
typedef std::pair< Key, Pose2 > | IndexedPose |
Return type for auxiliary functions. | |
typedef std::pair< std::pair< Key, Key >, Pose2 > | IndexedEdge |
typedef std::pair< NonlinearFactorGraph::shared_ptr, Values::shared_ptr > | GraphAndValues |
Return type for load functions. | |
using | BetweenFactorPose3s = std::vector< gtsam::BetweenFactor< Pose3 >::shared_ptr > |
Parse edges in 3D TORO graph file into a set of BetweenFactors. | |
typedef std::pair< size_t, Point2 > | SfM_Measurement |
A measurement with its camera index. | |
typedef std::pair< size_t, size_t > | SIFT_Index |
SfM_Track. | |
typedef PinholeCamera< Cal3Bundler > | SfM_Camera |
Define the structure for the camera poses. | |
typedef Expression< Point2 > | Point2_ |
typedef Expression< Rot2 > | Rot2_ |
typedef Expression< Pose2 > | Pose2_ |
typedef Expression< Point3 > | Point3_ |
typedef Expression< Unit3 > | Unit3_ |
typedef Expression< Rot3 > | Rot3_ |
typedef Expression< Pose3 > | Pose3_ |
typedef Expression< Cal3_S2 > | Cal3_S2_ |
typedef Expression< Cal3Bundler > | Cal3Bundler_ |
typedef std::map< Key, std::vector< size_t > > | KeyVectorMap |
typedef std::map< Key, Rot3 > | KeyRotMap |
typedef DSF< int > | DSFInt |
typedef Eigen::RowVectorXd | RowVector |
using | KeyDimMap = std::map< Key, size_t > |
Mapping between variable's key and its corresponding dimensionality. | |
using | LPSolver = ActiveSetSolver< LP, LPPolicy, LPInitSolver > |
using | QPSolver = ActiveSetSolver< QP, QPPolicy, QPInitSolver > |
typedef qi::grammar< boost::spirit::basic_istream_iterator< char > > | base_grammar |
typedef ConcurrentBatchFilter::Result | ConcurrentBatchFilterResult |
Typedef for Matlab wrapping. | |
typedef ConcurrentBatchSmoother::Result | ConcurrentBatchSmootherResult |
Typedef for Matlab wrapping. | |
typedef ConcurrentIncrementalFilter::Result | ConcurrentIncrementalFilterResult |
Typedef for Matlab wrapping. | |
typedef ConcurrentIncrementalSmoother::Result | ConcurrentIncrementalSmootherResult |
Typedef for Matlab wrapping. | |
typedef FixedLagSmoother::KeyTimestampMap | FixedLagSmootherKeyTimestampMap |
Typedef for matlab wrapping. | |
typedef FixedLagSmootherKeyTimestampMap::value_type | FixedLagSmootherKeyTimestampMapValue |
typedef FixedLagSmoother::Result | FixedLagSmootherResult |
typedef SmartProjectionParams | SmartStereoProjectionParams |
typedef gtsam::RangeFactor< gtsam::PoseRTV, gtsam::PoseRTV > | RangeFactorRTV |
typedef gtsam::ProjectionFactorPPP< gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2 > | ProjectionFactorPPPCal3_S2 |
typedef gtsam::ProjectionFactorPPP< gtsam::Pose3, gtsam::Point3, gtsam::Cal3DS2 > | ProjectionFactorPPPCal3DS2 |
typedef gtsam::ProjectionFactorPPPC< gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2 > | ProjectionFactorPPPCCal3_S2 |
typedef gtsam::ProjectionFactorPPPC< gtsam::Pose3, gtsam::Point3, gtsam::Cal3DS2 > | ProjectionFactorPPPCCal3DS2 |
Enumerations | |
enum | NoiseFormat { NoiseFormatG2O, NoiseFormatTORO, NoiseFormatGRAPH, NoiseFormatCOV, NoiseFormatAUTO } |
Indicates how noise parameters are stored in file. More... | |
enum | KernelFunctionType { KernelFunctionTypeNONE, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY } |
Robust kernel type to wrap around quadratic noise model. | |
enum | LinearizationMode { HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD } |
SmartFactorParams: parameters and (linearization/degeneracy) modes for SmartProjection and SmartStereoProjection factors. More... | |
enum | DegeneracyMode { IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY } |
How to manage degeneracy. | |
Functions | |
template<typename T > | |
void | testDefaultChart (TestResult &result_, const std::string &name_, const T &value) |
pair< size_t, bool > | choleskyCareful (Matrix &ATA, int order=-1) |
"Careful" Cholesky computes the positive square-root of a positive symmetric semi-definite matrix (i.e. More... | |
bool | choleskyPartial (Matrix &ABC, size_t nFrontal, size_t topleft=0) |
Partial Cholesky computes a factor [R S such that [R' 0 [R S = [A B 0 L] S' I] 0 L] B' C]. More... | |
bool | guardedIsDebug (const std::string &s) |
void | guardedSetDebug (const std::string &s, const bool v) |
template<typename G > | |
BOOST_CONCEPT_REQUIRES (((IsGroup< G >)),(bool)) check_group_invariants(const G &a | |
Check invariants. | |
template<class Class > | |
Class | between_default (const Class &l1, const Class &l2) |
These core global functions can be specialized by new Lie types for better performance. More... | |
template<class Class > | |
Vector | logmap_default (const Class &l0, const Class &lp) |
Log map centered at l0, s.t. More... | |
template<class Class > | |
Class | expmap_default (const Class &t, const Vector &d) |
Exponential map centered at l0, s.t. More... | |
template<class T > | |
T | BCH (const T &X, const T &Y) |
Three term approximation of the Baker-Campbell-Hausdorff formula In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y) it is not true that Z = X+Y. More... | |
template<class T > | |
Matrix | wedge (const Vector &x) |
Declaration of wedge (see Murray94book) used to convert from n exponential coordinates to n*n element of the Lie algebra. | |
template<class T > | |
T | expm (const Vector &x, int K=7) |
Exponential map given exponential coordinates class T needs a wedge<> function and a constructor from Matrix. More... | |
template<typename T > | |
T | interpolate (const T &X, const T &Y, double t) |
Linear interpolation between X and Y by coefficient t in [0, 1]. | |
template<typename T > | |
BOOST_CONCEPT_REQUIRES (((IsTestable< T >)),(bool)) check_manifold_invariants(const T &a | |
Check invariants for Manifold type. | |
bool | assert_equal (const Matrix &A, const Matrix &B, double tol=1e-9) |
equals with an tolerance, prints out message if unequal | |
bool | assert_inequal (const Matrix &A, const Matrix &B, double tol=1e-9) |
inequals with an tolerance, prints out message if within tolerance | |
bool | assert_equal (const std::list< Matrix > &As, const std::list< Matrix > &Bs, double tol=1e-9) |
equals with an tolerance, prints out message if unequal | |
bool | linear_independent (const Matrix &A, const Matrix &B, double tol=1e-9) |
check whether the rows of two matrices are linear independent | |
bool | linear_dependent (const Matrix &A, const Matrix &B, double tol=1e-9) |
check whether the rows of two matrices are linear dependent | |
Vector | operator^ (const Matrix &A, const Vector &v) |
overload ^ for trans(A)*v We transpose the vectors for speed. | |
void | print (const Matrix &A, const std::string &s, std::ostream &stream) |
print without optional string, must specify cout yourself | |
void | print (const Matrix &A, const std::string &s="") |
print with optional string to cout | |
void | save (const Matrix &A, const std::string &s, const std::string &filename) |
save a matrix to file, which can be loaded by matlab | |
istream & | operator>> (std::istream &inputStream, Matrix &destinationMatrix) |
Read a matrix from an input stream, such as a file. More... | |
Matrix | diag (const std::vector< Matrix > &Hs) |
Create a matrix with submatrices along its diagonal. | |
Vector | columnNormSquare (const Matrix &A) |
pair< Matrix, Matrix > | qr (const Matrix &A) |
Householder QR factorization, Golub & Van Loan p 224, explicit version. More... | |
list< boost::tuple< Vector, double, double > > | weighted_eliminate (Matrix &A, Vector &b, const Vector &sigmas) |
Imperative algorithm for in-place full elimination with weights and constraint handling. More... | |
void | householder_ (Matrix &A, size_t k, bool copy_vectors) |
Imperative version of Householder QR factorization, Golub & Van Loan p 224 version with Householder vectors below diagonal, as in GVL. More... | |
void | householder (Matrix &A, size_t k) |
Householder tranformation, zeros below diagonal. More... | |
Vector | backSubstituteLower (const Matrix &L, const Vector &b, bool unit=false) |
backSubstitute L*x=b More... | |
Vector | backSubstituteUpper (const Matrix &U, const Vector &b, bool unit=false) |
backSubstitute U*x=b More... | |
Vector | backSubstituteUpper (const Vector &b, const Matrix &U, bool unit=false) |
backSubstitute x'*U=b' More... | |
Matrix | stack (size_t nrMatrices,...) |
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3... More... | |
Matrix | stack (const std::vector< Matrix > &blocks) |
Matrix | collect (const std::vector< const Matrix * > &matrices, size_t m=0, size_t n=0) |
create a matrix by concatenating Given a set of matrices: A1, A2, A3... More... | |
Matrix | collect (size_t nrMatrices,...) |
void | vector_scale_inplace (const Vector &v, Matrix &A, bool inf_mask=false) |
scales a matrix row or column by the values in a vector Arguments (Matrix, Vector) scales the columns, (Vector, Matrix) scales the rows More... | |
Matrix | vector_scale (const Vector &v, const Matrix &A, bool inf_mask) |
Matrix | vector_scale (const Matrix &A, const Vector &v, bool inf_mask) |
Matrix | LLt (const Matrix &A) |
Matrix | RtR (const Matrix &A) |
Matrix | cholesky_inverse (const Matrix &A) |
Return the inverse of a S.P.D. More... | |
Matrix | inverse_square_root (const Matrix &A) |
Use Cholesky to calculate inverse square root of a matrix. | |
void | svd (const Matrix &A, Matrix &U, Vector &S, Matrix &V) |
SVD computes economy SVD A=U*S*V'. More... | |
boost::tuple< int, double, Vector > | DLT (const Matrix &A, double rank_tol=1e-9) |
Direct linear transform algorithm that calls svd to find a vector v that minimizes the algebraic error A*v. More... | |
Matrix | expm (const Matrix &A, size_t K=7) |
Numerical exponential map, naive approach, not industrial strength !!! More... | |
std::string | formatMatrixIndented (const std::string &label, const Matrix &matrix, bool makeVectorHorizontal) |
void | inplace_QR (Matrix &A) |
QR factorization using Eigen's internal block QR algorithm. More... | |
GTSAM_MAKE_MATRIX_DEFS (1) | |
GTSAM_MAKE_MATRIX_DEFS (2) | |
GTSAM_MAKE_MATRIX_DEFS (3) | |
GTSAM_MAKE_MATRIX_DEFS (4) | |
GTSAM_MAKE_MATRIX_DEFS (5) | |
GTSAM_MAKE_MATRIX_DEFS (6) | |
GTSAM_MAKE_MATRIX_DEFS (7) | |
GTSAM_MAKE_MATRIX_DEFS (8) | |
GTSAM_MAKE_MATRIX_DEFS (9) | |
template<class MATRIX > | |
bool | equal_with_abs_tol (const Eigen::DenseBase< MATRIX > &A, const Eigen::DenseBase< MATRIX > &B, double tol=1e-9) |
equals with a tolerance | |
bool | operator== (const Matrix &A, const Matrix &B) |
equality is just equal_with_abs_tol 1e-9 | |
bool | operator!= (const Matrix &A, const Matrix &B) |
inequality | |
template<class MATRIX > | |
MATRIX | prod (const MATRIX &A, const MATRIX &B) |
products using old-style format to improve compatibility | |
template<class MATRIX > | |
Eigen::Block< const MATRIX > | sub (const MATRIX &A, size_t i1, size_t i2, size_t j1, size_t j2) |
extract submatrix, slice semantics, i.e. More... | |
template<typename Derived1 , typename Derived2 > | |
void | insertSub (Eigen::MatrixBase< Derived1 > &fullMatrix, const Eigen::MatrixBase< Derived2 > &subMatrix, size_t i, size_t j) |
insert a submatrix IN PLACE at a specified location in a larger matrix NOTE: there is no size checking More... | |
template<class MATRIX > | |
const MATRIX::ConstColXpr | column (const MATRIX &A, size_t j) |
Extracts a column view from a matrix that avoids a copy. More... | |
template<class MATRIX > | |
const MATRIX::ConstRowXpr | row (const MATRIX &A, size_t j) |
Extracts a row view from a matrix that avoids a copy. More... | |
template<class MATRIX > | |
void | zeroBelowDiagonal (MATRIX &A, size_t cols=0) |
Zeros all of the elements below the diagonal of a matrix, in place. More... | |
Matrix | trans (const Matrix &A) |
static transpose function, just calls Eigen transpose member function | |
template<int OutM, int OutN, int OutOptions, int InM, int InN, int InOptions> | |
Reshape< OutM, OutN, OutOptions, InM, InN, InOptions >::ReshapedType | reshape (const Eigen::Matrix< double, InM, InN, InOptions > &m) |
Matrix3 | skewSymmetric (double wx, double wy, double wz) |
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0 More... | |
template<class Derived > | |
Matrix3 | skewSymmetric (const Eigen::MatrixBase< Derived > &w) |
template<class X , int N = traits<X>::dimension> | |
Eigen::Matrix< double, N, 1 > | numericalGradient (boost::function< double(const X &)> h, const X &x, double delta=1e-5) |
Numerically compute gradient of scalar function. More... | |
template<class Y , class X , int N = traits<X>::dimension> | |
internal::FixedSizeMatrix< Y, X >::type | numericalDerivative11 (boost::function< Y(const X &)> h, const X &x, double delta=1e-5) |
New-style numerical derivatives using manifold_traits. More... | |
template<class Y , class X > | |
internal::FixedSizeMatrix< Y, X >::type | numericalDerivative11 (Y(*h)(const X &), const X &x, double delta=1e-5) |
use a raw C++ function pointer | |
template<class Y , class X1 , class X2 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative21 (const boost::function< Y(const X1 &, const X2 &)> &h, const X1 &x1, const X2 &x2, double delta=1e-5) |
Compute numerical derivative in argument 1 of binary function. More... | |
template<class Y , class X1 , class X2 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative21 (Y(*h)(const X1 &, const X2 &), const X1 &x1, const X2 &x2, double delta=1e-5) |
use a raw C++ function pointer | |
template<class Y , class X1 , class X2 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative22 (boost::function< Y(const X1 &, const X2 &)> h, const X1 &x1, const X2 &x2, double delta=1e-5) |
Compute numerical derivative in argument 2 of binary function. More... | |
template<class Y , class X1 , class X2 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative22 (Y(*h)(const X1 &, const X2 &), const X1 &x1, const X2 &x2, double delta=1e-5) |
use a raw C++ function pointer | |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative31 (boost::function< Y(const X1 &, const X2 &, const X3 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
Compute numerical derivative in argument 1 of ternary function. More... | |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative31 (Y(*h)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative32 (boost::function< Y(const X1 &, const X2 &, const X3 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
Compute numerical derivative in argument 2 of ternary function. More... | |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative32 (Y(*h)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative33 (boost::function< Y(const X1 &, const X2 &, const X3 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
Compute numerical derivative in argument 3 of ternary function. More... | |
template<class Y , class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative33 (Y(*h)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative41 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
Compute numerical derivative in argument 1 of 4-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative41 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative42 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
Compute numerical derivative in argument 2 of 4-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative42 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative43 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
Compute numerical derivative in argument 3 of 4-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative43 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X4 >::type | numericalDerivative44 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
Compute numerical derivative in argument 4 of 4-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 > | |
internal::FixedSizeMatrix< Y, X4 >::type | numericalDerivative44 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative51 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
Compute numerical derivative in argument 1 of 5-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X1 >::type | numericalDerivative51 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative52 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
Compute numerical derivative in argument 2 of 5-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X2 >::type | numericalDerivative51 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative53 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
Compute numerical derivative in argument 3 of 5-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X3 >::type | numericalDerivative53 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X4 >::type | numericalDerivative54 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
Compute numerical derivative in argument 4 of 5-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X4 >::type | numericalDerivative53 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X5 >::type | numericalDerivative55 (boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> h, const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
Compute numerical derivative in argument 5 of 5-argument function. More... | |
template<class Y , class X1 , class X2 , class X3 , class X4 , class X5 > | |
internal::FixedSizeMatrix< Y, X5 >::type | numericalDerivative53 (Y(*h)(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &), const X1 &x1, const X2 &x2, const X3 &x3, const X4 &x4, const X5 &x5, double delta=1e-5) |
template<class X > | |
internal::FixedSizeMatrix< X, X >::type | numericalHessian (boost::function< double(const X &)> f, const X &x, double delta=1e-5) |
Compute numerical Hessian matrix. More... | |
template<class X > | |
internal::FixedSizeMatrix< X, X >::type | numericalHessian (double(*f)(const X &), const X &x, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X1, X2 >::type | numericalHessian212 (boost::function< double(const X1 &, const X2 &)> f, const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X1, X2 >::type | numericalHessian212 (double(*f)(const X1 &, const X2 &), const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X1, X1 >::type | numericalHessian211 (boost::function< double(const X1 &, const X2 &)> f, const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X1, X1 >::type | numericalHessian211 (double(*f)(const X1 &, const X2 &), const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X2, X2 >::type | numericalHessian222 (boost::function< double(const X1 &, const X2 &)> f, const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 > | |
internal::FixedSizeMatrix< X2, X2 >::type | numericalHessian222 (double(*f)(const X1 &, const X2 &), const X1 &x1, const X2 &x2, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X1 >::type | numericalHessian311 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
Numerical Hessian for tenary functions. | |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X1 >::type | numericalHessian311 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X2, X2 >::type | numericalHessian322 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X2, X2 >::type | numericalHessian322 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X3, X3 >::type | numericalHessian333 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X3, X3 >::type | numericalHessian333 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X2 >::type | numericalHessian312 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X3 >::type | numericalHessian313 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X2, X3 >::type | numericalHessian323 (boost::function< double(const X1 &, const X2 &, const X3 &)> f, const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X2 >::type | numericalHessian312 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X1, X3 >::type | numericalHessian313 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class X1 , class X2 , class X3 > | |
internal::FixedSizeMatrix< X2, X3 >::type | numericalHessian323 (double(*f)(const X1 &, const X2 &, const X3 &), const X1 &x1, const X2 &x2, const X3 &x3, double delta=1e-5) |
template<class T > | |
std::string | serialize (const T &input) |
template<class T > | |
void | deserialize (const std::string &serialized, T &output) |
template<class T > | |
bool | serializeToFile (const T &input, const std::string &filename) |
template<class T > | |
bool | deserializeFromFile (const std::string &filename, T &output) |
template<class T > | |
std::string | serializeXML (const T &input, const std::string &name="data") |
template<class T > | |
void | deserializeXML (const std::string &serialized, T &output, const std::string &name="data") |
template<class T > | |
bool | serializeToXMLFile (const T &input, const std::string &filename, const std::string &name="data") |
template<class T > | |
bool | deserializeFromXMLFile (const std::string &filename, T &output, const std::string &name="data") |
template<class T > | |
std::string | serializeBinary (const T &input, const std::string &name="data") |
template<class T > | |
void | deserializeBinary (const std::string &serialized, T &output, const std::string &name="data") |
template<class T > | |
bool | serializeToBinaryFile (const T &input, const std::string &filename, const std::string &name="data") |
template<class T > | |
bool | deserializeFromBinaryFile (const std::string &filename, T &output, const std::string &name="data") |
void | print (float v, const std::string &s="") |
void | print (double v, const std::string &s="") |
template<class T > | |
bool | equal (const T &obj1, const T &obj2, double tol) |
Call equal on the object. | |
template<class T > | |
bool | equal (const T &obj1, const T &obj2) |
Call equal without tolerance (use default tolerance) | |
template<class V > | |
bool | assert_equal (const V &expected, const V &actual, double tol=1e-9) |
This template works for any type with equals. | |
bool | assert_equal (const Key &expected, const Key &actual, double tol=0.0) |
Equals testing for basic types. | |
template<class V > | |
bool | assert_equal (const boost::optional< V > &expected, const boost::optional< V > &actual, double tol=1e-9) |
Comparisons for boost.optional objects that checks whether objects exist before comparing their values. More... | |
template<class V > | |
bool | assert_equal (const V &expected, const boost::optional< V > &actual, double tol=1e-9) |
template<class V > | |
bool | assert_equal (const V &expected, const boost::optional< const V & > &actual, double tol=1e-9) |
template<class V > | |
bool | assert_equal (const std::vector< V > &expected, const std::vector< V > &actual, double tol=1e-9) |
Version of assert_equals to work with vectors. More... | |
template<class V1 , class V2 > | |
bool | assert_container_equal (const std::map< V1, V2 > &expected, const std::map< V1, V2 > &actual, double tol=1e-9) |
Function for comparing maps of testable->testable TODO: replace with more generalized version. | |
template<class V2 > | |
bool | assert_container_equal (const std::map< size_t, V2 > &expected, const std::map< size_t, V2 > &actual, double tol=1e-9) |
Function for comparing maps of size_t->testable. | |
template<class V1 , class V2 > | |
bool | assert_container_equal (const std::vector< std::pair< V1, V2 > > &expected, const std::vector< std::pair< V1, V2 > > &actual, double tol=1e-9) |
Function for comparing vector of pairs (testable, testable) | |
template<class V > | |
bool | assert_container_equal (const V &expected, const V &actual, double tol=1e-9) |
General function for comparing containers of testable objects. | |
template<class V2 > | |
bool | assert_container_equality (const std::map< size_t, V2 > &expected, const std::map< size_t, V2 > &actual) |
Function for comparing maps of size_t->testable Types are assumed to have operator ==. | |
template<class V > | |
bool | assert_container_equality (const V &expected, const V &actual) |
General function for comparing containers of objects with operator==. | |
bool | assert_equal (const std::string &expected, const std::string &actual) |
Compare strings for unit tests. | |
template<class V > | |
bool | assert_inequal (const V &expected, const V &actual, double tol=1e-9) |
Allow for testing inequality. | |
template<typename G > | |
void | testLieGroupDerivatives (TestResult &result_, const std::string &name_, const G &t1, const G &t2) |
template<typename G > | |
void | testChartDerivatives (TestResult &result_, const std::string &name_, const G &t1, const G &t2) |
void | tictoc_finishedIteration_ () |
void | tictoc_print_ () |
void | tictoc_print2_ () |
void | tictoc_reset_ () |
BOOST_CONCEPT_ASSERT ((boost::RandomAccessRangeConcept< ListOfOneContainer< int > >)) | |
template<typename T > | |
ListOfOneContainer< T > | ListOfOne (const T &element) |
Factory function for ListOfOneContainer to enable ListOfOne(e) syntax. More... | |
void | print (const Vector &v, const std::string &s, std::ostream &stream) |
print without optional string, must specify cout yourself | |
void | print (const Vector &v, const std::string &s="") |
print with optional string to cout | |
void | save (const Vector &A, const std::string &s, const std::string &filename) |
save a vector to file, which can be loaded by matlab | |
bool | operator== (const Vector &vec1, const Vector &vec2) |
operator==() | |
bool | greaterThanOrEqual (const Vector &v1, const Vector &v2) |
Greater than or equal to operation returns true if all elements in v1 are greater than corresponding elements in v2. | |
bool | equal_with_abs_tol (const Vector &vec1, const Vector &vec2, double tol=1e-9) |
VecA == VecB up to tolerance. | |
bool | equal_with_abs_tol (const SubVector &vec1, const SubVector &vec2, double tol) |
bool | assert_equal (const Vector &vec1, const Vector &vec2, double tol=1e-9) |
Same, prints if error. More... | |
bool | assert_inequal (const Vector &vec1, const Vector &vec2, double tol=1e-9) |
Not the same, prints if error. More... | |
bool | assert_equal (const SubVector &vec1, const SubVector &vec2, double tol=1e-9) |
Same, prints if error. More... | |
bool | assert_equal (const ConstSubVector &expected, const ConstSubVector &actual, double tol) |
bool | linear_dependent (const Vector &vec1, const Vector &vec2, double tol=1e-9) |
check whether two vectors are linearly dependent More... | |
Vector | ediv_ (const Vector &a, const Vector &b) |
elementwise division, but 0/0 = 0, not inf More... | |
double | houseInPlace (Vector &x) |
beta = house(x) computes the HouseHolder vector in place | |
pair< double, Vector > | house (const Vector &x) |
house(x,j) computes HouseHolder vector v and scaling factor beta from x, such that the corresponding Householder reflection zeroes out all but x. More... | |
double | weightedPseudoinverse (const Vector &a, const Vector &weights, Vector &pseudo) |
pair< Vector, double > | weightedPseudoinverse (const Vector &v, const Vector &weights) |
Weighted Householder solution vector, a.k.a., the pseudoinverse of the column NOTE: if any sigmas are zero (indicating a constraint) the pseudoinverse will be a selection vector, and the variance will be zero. More... | |
Vector | concatVectors (const std::list< Vector > &vs) |
concatenate Vectors | |
Vector | concatVectors (size_t nrVectors,...) |
concatenate Vectors | |
GTSAM_MAKE_VECTOR_DEFS (4) | |
GTSAM_MAKE_VECTOR_DEFS (5) | |
GTSAM_MAKE_VECTOR_DEFS (6) | |
GTSAM_MAKE_VECTOR_DEFS (7) | |
GTSAM_MAKE_VECTOR_DEFS (8) | |
GTSAM_MAKE_VECTOR_DEFS (9) | |
GTSAM_MAKE_VECTOR_DEFS (10) | |
GTSAM_MAKE_VECTOR_DEFS (11) | |
GTSAM_MAKE_VECTOR_DEFS (12) | |
bool | equal (const Vector &vec1, const Vector &vec2, double tol) |
Override of equal in Lie.h. | |
bool | equal (const Vector &vec1, const Vector &vec2) |
Override of equal in Lie.h. | |
template<class V1 , class V2 > | |
double | dot (const V1 &a, const V2 &b) |
Dot product. | |
template<class V1 , class V2 > | |
double | inner_prod (const V1 &a, const V2 &b) |
compatibility version for ublas' inner_prod() | |
void | scal (double alpha, Vector &x) |
BLAS Level 1 scal: x <- alpha*x. More... | |
template<class V1 , class V2 > | |
void | axpy (double alpha, const V1 &x, V2 &y) |
BLAS Level 1 axpy: y <- alpha*x + y. More... | |
void | axpy (double alpha, const Vector &x, SubVector y) |
template<typename L > | |
std::vector< Assignment< L > > | cartesianProduct (const std::vector< std::pair< L, size_t > > &keys) |
Get Cartesian product consisting all possible configurations. More... | |
template<typename Y , typename L > | |
DecisionTree< L, Y > | apply (const DecisionTree< L, Y > &f, const typename DecisionTree< L, Y >::Unary &op) |
free versions of apply | |
template<typename Y , typename L > | |
DecisionTree< L, Y > | apply (const DecisionTree< L, Y > &f, const DecisionTree< L, Y > &g, const typename DecisionTree< L, Y >::Binary &op) |
std::pair< DiscreteConditional::shared_ptr, DecisionTreeFactor::shared_ptr > | EliminateDiscrete (const DiscreteFactorGraph &factors, const Ordering &keys) |
Main elimination function for DiscreteFactorGraph. | |
DiscreteKeys | operator & (const DiscreteKey &key1, const DiscreteKey &key2) |
Create a list from two keys. | |
ostream & | operator<< (ostream &os, const Signature::Row &row) |
ostream & | operator<< (ostream &os, const Signature::Table &table) |
ostream & | operator<< (ostream &os, const Signature &s) |
Signature | operator| (const DiscreteKey &key, const DiscreteKey &parent) |
Helper function to create Signature objects example: Signature s = D | E;. | |
Signature | operator% (const DiscreteKey &key, const std::string &parent) |
Helper function to create Signature objects example: Signature s(D % "99/1"); Uses string parser, which requires BOOST 1.42 or higher. | |
Signature | operator% (const DiscreteKey &key, const Signature::Table &parent) |
Helper function to create Signature objects, using table construction directly example: Signature s(D % table);. | |
ostream & | operator<< (ostream &os, const Cal3_S2 &cal) |
ostream & | operator<< (ostream &os, const EssentialMatrix &E) |
istream & | operator >> (istream &is, EssentialMatrix &E) |
double | norm2 (const Point2 &p, OptionalJacobian< 1, 2 > H=boost::none) |
Distance of the point from the origin, with Jacobian. | |
double | distance2 (const Point2 &p1, const Point2 &q, OptionalJacobian< 1, 2 > H1=boost::none, OptionalJacobian< 1, 2 > H2=boost::none) |
distance between two points | |
ostream & | operator<< (ostream &os, const Point2 &p) |
boost::optional< Point2 > | circleCircleIntersection (double R_d, double r_d, double tol) |
list< Point2 > | circleCircleIntersection (Point2 c1, Point2 c2, boost::optional< Point2 > fh) |
list< Point2 > | circleCircleIntersection (Point2 c1, double r1, Point2 c2, double r2, double tol=1e-9) |
Intersect 2 circles. More... | |
ostream & | operator<< (ostream &os, const gtsam::Point2Pair &p) |
Point2 | operator * (double s, const Point2 &p) |
multiply with scalar | |
ostream & | operator<< (ostream &os, const Point3 &p) |
double | distance3 (const Point3 &p1, const Point3 &q, OptionalJacobian< 1, 3 > H1=boost::none, OptionalJacobian< 1, 3 > H2=boost::none) |
distance between two points | |
double | norm3 (const Point3 &p, OptionalJacobian< 1, 3 > H=boost::none) |
Distance of the point from the origin, with Jacobian. | |
Point3 | normalize (const Point3 &p, OptionalJacobian< 3, 3 > H=boost::none) |
normalize, with optional Jacobian | |
Point3 | cross (const Point3 &p, const Point3 &q, OptionalJacobian< 3, 3 > H_p=boost::none, OptionalJacobian< 3, 3 > H_q=boost::none) |
cross product More... | |
double | dot (const Point3 &p, const Point3 &q, OptionalJacobian< 1, 3 > H_p=boost::none, OptionalJacobian< 1, 3 > H_q=boost::none) |
dot product | |
ostream & | operator<< (ostream &os, const gtsam::Point3Pair &p) |
GTSAM_CONCEPT_POSE_INST (Pose2) | |
instantiate concept checks | |
boost::optional< Pose2 > | align (const vector< Point2Pair > &pairs) |
template<> | |
Matrix | wedge< Pose2 > (const Vector &xi) |
specialization for pose2 wedge function (generic template in Lie.h) | |
GTSAM_CONCEPT_POSE_INST (Pose3) | |
instantiate concept checks | |
boost::optional< Pose3 > | align (const vector< Point3Pair > &baPointPairs) |
std::ostream & | operator<< (std::ostream &os, const Pose3 &pose) |
template<> | |
Matrix | wedge< Pose3 > (const Vector &xi) |
wedge for Pose3: More... | |
pair< Matrix3, Vector3 > | RQ (const Matrix3 &A) |
[RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx' such that A = R*Q = R*Qz'*Qy'*Qx'. More... | |
ostream & | operator<< (ostream &os, const Rot3 &R) |
SimpleCamera | simpleCamera (const Matrix34 &P) |
Recover camera from 3*4 camera matrix. | |
ostream & | operator<< (ostream &os, const StereoPoint2 &p) |
Vector4 | triangulateHomogeneousDLT (const std::vector< Matrix34, Eigen::aligned_allocator< Matrix34 >> &projection_matrices, const Point2Vector &measurements, double rank_tol=1e-9) |
DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312. More... | |
Point3 | triangulateDLT (const std::vector< Matrix34, Eigen::aligned_allocator< Matrix34 >> &projection_matrices, const Point2Vector &measurements, double rank_tol=1e-9) |
DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312. More... | |
Point3 | optimize (const NonlinearFactorGraph &graph, const Values &values, Key landmarkKey) |
Optimize for triangulation. More... | |
template<class CALIBRATION > | |
std::pair< NonlinearFactorGraph, Values > | triangulationGraph (const std::vector< Pose3 > &poses, boost::shared_ptr< CALIBRATION > sharedCal, const Point2Vector &measurements, Key landmarkKey, const Point3 &initialEstimate) |
Create a factor graph with projection factors from poses and one calibration. More... | |
template<class CAMERA > | |
std::pair< NonlinearFactorGraph, Values > | triangulationGraph (const CameraSet< CAMERA > &cameras, const typename CAMERA::MeasurementVector &measurements, Key landmarkKey, const Point3 &initialEstimate) |
Create a factor graph with projection factors from pinhole cameras (each camera has a pose and calibration) More... | |
template<class CALIBRATION > | |
std::pair< NonlinearFactorGraph, Values > | triangulationGraph (const CameraSet< PinholeCamera< CALIBRATION > > &cameras, const Point2Vector &measurements, Key landmarkKey, const Point3 &initialEstimate) |
PinholeCamera specific version // TODO: (chris) why does this exist? | |
template<class CALIBRATION > | |
Point3 | triangulateNonlinear (const std::vector< Pose3 > &poses, boost::shared_ptr< CALIBRATION > sharedCal, const Point2Vector &measurements, const Point3 &initialEstimate) |
Given an initial estimate , refine a point using measurements in several cameras. More... | |
template<class CAMERA > | |
Point3 | triangulateNonlinear (const CameraSet< CAMERA > &cameras, const typename CAMERA::MeasurementVector &measurements, const Point3 &initialEstimate) |
Given an initial estimate , refine a point using measurements in several cameras. More... | |
template<class CALIBRATION > | |
Point3 | triangulateNonlinear (const CameraSet< PinholeCamera< CALIBRATION > > &cameras, const Point2Vector &measurements, const Point3 &initialEstimate) |
PinholeCamera specific version // TODO: (chris) why does this exist? | |
template<class CALIBRATION > | |
Point3 | triangulatePoint3 (const std::vector< Pose3 > &poses, boost::shared_ptr< CALIBRATION > sharedCal, const Point2Vector &measurements, double rank_tol=1e-9, bool optimize=false) |
Function to triangulate 3D landmark point from an arbitrary number of poses (at least 2) using the DLT. More... | |
template<class CAMERA > | |
Point3 | triangulatePoint3 (const CameraSet< CAMERA > &cameras, const typename CAMERA::MeasurementVector &measurements, double rank_tol=1e-9, bool optimize=false) |
Function to triangulate 3D landmark point from an arbitrary number of poses (at least 2) using the DLT. More... | |
template<class CALIBRATION > | |
Point3 | triangulatePoint3 (const CameraSet< PinholeCamera< CALIBRATION > > &cameras, const Point2Vector &measurements, double rank_tol=1e-9, bool optimize=false) |
Pinhole-specific version. | |
template<class CAMERA > | |
TriangulationResult | triangulateSafe (const CameraSet< CAMERA > &cameras, const typename CAMERA::MeasurementVector &measured, const TriangulationParameters ¶ms) |
triangulateSafe: extensive checking of the outcome | |
std::ostream & | operator<< (std::ostream &os, const Unit3 &pair) |
template<class CLIQUE > | |
bool | check_sharedCliques (const std::pair< Key, typename BayesTree< CLIQUE >::sharedClique > &v1, const std::pair< Key, typename BayesTree< CLIQUE >::sharedClique > &v2) |
template<class KEY > | |
std::list< KEY > | predecessorMap2Keys (const PredecessorMap< KEY > &p_map) |
Generate a list of keys from a spanning tree represented by its predecessor map. | |
template<class G , class F , class KEY > | |
SDGraph< KEY > | toBoostGraph (const G &graph) |
Convert the factor graph to an SDGraph G = Graph type F = Factor type Key = Key type. | |
template<class G , class V , class KEY > | |
boost::tuple< G, V, std::map< KEY, V > > | predecessorMap2Graph (const PredecessorMap< KEY > &p_map) |
Build takes a predecessor map, and builds a directed graph corresponding to the tree. More... | |
template<class G , class Factor , class POSE , class KEY > | |
boost::shared_ptr< Values > | composePoses (const G &graph, const PredecessorMap< KEY > &tree, const POSE &rootPose) |
Compose the poses by following the chain specified by the spanning tree. | |
template<class G , class KEY , class FACTOR2 > | |
PredecessorMap< KEY > | findMinimumSpanningTree (const G &g) |
find the minimum spanning tree using boost graph library | |
template<class G , class KEY , class FACTOR2 > | |
void | split (const G &g, const PredecessorMap< KEY > &tree, G &Ab1, G &Ab2) |
Split the graph into two parts: one corresponds to the given spanning tree, and the other corresponds to the rest of the factors. | |
string | _defaultKeyFormatter (Key key) |
void | PrintKey (Key key, const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) |
Utility function to print one key with optional prefix. | |
string | _multirobotKeyFormatter (Key key) |
void | PrintKeyList (const KeyList &keys, const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) |
Utility function to print sets of keys with optional prefix. | |
void | PrintKeyVector (const KeyVector &keys, const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) |
Utility function to print sets of keys with optional prefix. | |
void | PrintKeySet (const KeySet &keys, const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) |
Utility function to print sets of keys with optional prefix. | |
Key | mrsymbol (unsigned char c, unsigned char label, size_t j) |
Create a symbol key from a character, label and index, i.e. More... | |
unsigned char | mrsymbolChr (Key key) |
Return the character portion of a symbol key. More... | |
unsigned char | mrsymbolLabel (Key key) |
Return the label portion of a symbol key. More... | |
size_t | mrsymbolIndex (Key key) |
Return the index portion of a symbol key. More... | |
Key | symbol (unsigned char c, std::uint64_t j) |
Create a symbol key from a character and index, i.e. More... | |
unsigned char | symbolChr (Key key) |
Return the character portion of a symbol key. More... | |
std::uint64_t | symbolIndex (Key key) |
Return the index portion of a symbol key. More... | |
template<class S , class V > | |
V | preconditionedConjugateGradient (const S &system, const V &initial, const ConjugateGradientParameters ¶meters) |
double | dot (const Errors &a, const Errors &b) |
dot product | |
template<> | |
void | axpy< Errors, Errors > (double alpha, const Errors &x, Errors &y) |
BLAS level 2 style. | |
void | print (const Errors &a, const std::string &s="Error") |
print with optional string | |
template<> | |
GTSAM_EXPORT void | axpy< Errors, Errors > (double alpha, const Errors &x, Errors &y) |
BLAS level 2 style. | |
bool | hasConstraints (const GaussianFactorGraph &factors) |
Evaluates whether linear factors have any constrained noise models. More... | |
std::pair< boost::shared_ptr< GaussianConditional >, boost::shared_ptr< HessianFactor > > | EliminateCholesky (const GaussianFactorGraph &factors, const Ordering &keys) |
std::pair< boost::shared_ptr< GaussianConditional >, boost::shared_ptr< GaussianFactor > > | EliminatePreferCholesky (const GaussianFactorGraph &factors, const Ordering &keys) |
template<class S , class V , class E > | |
V | conjugateGradients (const S &Ab, V x, const ConjugateGradientParameters ¶meters, bool steepest=false) |
Method of conjugate gradients (CG) template "System" class S needs gradient(S,v), e=S*v, v=S^e "Vector" class V needs dot(v,v), -v, v+v, s*v "Vector" class E needs dot(v,v) More... | |
Vector | steepestDescent (const System &Ab, const Vector &x, const ConjugateGradientParameters ¶meters) |
Vector | conjugateGradientDescent (const System &Ab, const Vector &x, const ConjugateGradientParameters ¶meters) |
Method of conjugate gradients (CG), System version. | |
Vector | steepestDescent (const Matrix &A, const Vector &b, const Vector &x, const ConjugateGradientParameters ¶meters) |
convenience calls using matrices, will create System class internally: More... | |
Vector | conjugateGradientDescent (const Matrix &A, const Vector &b, const Vector &x, const ConjugateGradientParameters ¶meters) |
Method of conjugate gradients (CG), Matrix version. | |
VectorValues | steepestDescent (const GaussianFactorGraph &fg, const VectorValues &x, const ConjugateGradientParameters ¶meters) |
Method of steepest gradients, Gaussian Factor Graph version. | |
VectorValues | conjugateGradientDescent (const GaussianFactorGraph &fg, const VectorValues &x, const ConjugateGradientParameters ¶meters) |
Method of conjugate gradients (CG), Gaussian Factor Graph version. | |
GTSAM_EXPORT Vector | steepestDescent (const System &Ab, const Vector &x, const IterativeOptimizationParameters ¶meters) |
Method of steepest gradients, System version. | |
ostream & | operator<< (ostream &os, const IterativeOptimizationParameters &p) |
std::pair< GaussianConditional::shared_ptr, JacobianFactor::shared_ptr > | EliminateQR (const GaussianFactorGraph &factors, const Ordering &keys) |
Multiply all factors and eliminate the given keys from the resulting factor using a QR variant that handles constraints (zero sigmas). More... | |
ostream & | operator<< (ostream &os, const PreconditionerParameters &p) |
boost::shared_ptr< Preconditioner > | createPreconditioner (const boost::shared_ptr< PreconditionerParameters > parameters) |
ostream & | operator<< (ostream &os, const Subgraph::Edge &edge) |
ostream & | operator<< (ostream &os, const Subgraph &subgraph) |
ostream & | operator<< (ostream &os, const SubgraphBuilderParameters &p) |
GaussianFactorGraph::shared_ptr | buildFactorSubgraph (const GaussianFactorGraph &gfg, const Subgraph &subgraph, const bool clone) |
Select the factors in a factor graph according to the subgraph. More... | |
std::pair< GaussianFactorGraph::shared_ptr, GaussianFactorGraph::shared_ptr > | splitFactorGraph (const GaussianFactorGraph &factorGraph, const Subgraph &subgraph) |
Split the graph into a subgraph and the remaining edges. More... | |
VectorValues | operator * (const double a, const VectorValues &v) |
std::ostream & | operator<< (std::ostream &os, const ImuFactor &f) |
std::ostream & | operator<< (std::ostream &os, const ImuFactor2 &f) |
ostream & | operator<< (ostream &os, const NavState &state) |
ostream & | operator<< (ostream &os, const PreintegrationBase &pim) |
template<typename T > | |
Expression< T > | operator * (const Expression< T > &expression1, const Expression< T > &expression2) |
Construct a product expression, assumes T::compose(T) -> T. More... | |
template<typename T > | |
std::vector< Expression< T > > | createUnknowns (size_t n, char c, size_t start) |
Construct an array of leaves. More... | |
template<typename T , typename A > | |
Expression< T > | linearExpression (const boost::function< T(A)> &f, const Expression< A > &expression, const Eigen::Matrix< double, traits< T >::dimension, traits< A >::dimension > &dTdA) |
Create an expression out of a linear function f:T->A with (constant) Jacobian dTdA TODO(frank): create a more efficient version like ScalarMultiplyExpression. More... | |
template<typename T > | |
ScalarMultiplyExpression< T > | operator * (double s, const Expression< T > &e) |
Construct an expression that executes the scalar multiplication with an input expression The type T must be a vector space Example: Expression<Point2> a(0), b = 12 * a;. | |
template<typename T > | |
BinarySumExpression< T > | operator+ (const Expression< T > &e1, const Expression< T > &e2) |
Construct an expression that sums two input expressions of the same type T The type T must be a vector space Example: Expression<Point2> a(0), b(1), c = a + b;. | |
template<typename T > | |
BinarySumExpression< T > | operator- (const Expression< T > &e1, const Expression< T > &e2) |
Construct an expression that subtracts one expression from another. | |
template<typename T > | |
Expression< T > | between (const Expression< T > &t1, const Expression< T > &t2) |
template<typename T > | |
Expression< T > | compose (const Expression< T > &t1, const Expression< T > &t2) |
JacobianFactor | linearizeNumerically (const NoiseModelFactor &factor, const Values &values, double delta=1e-5) |
Linearize a nonlinear factor using numerical differentiation The benefit of this method is that it does not need to know what types are involved to evaluate the factor. More... | |
size_t | optimizeWildfire (const ISAM2Clique::shared_ptr &root, double threshold, const KeySet &replaced, VectorValues *delta) |
Optimize the BayesTree, starting from the root. More... | |
size_t | optimizeWildfireNonRecursive (const ISAM2Clique::shared_ptr &root, double threshold, const KeySet &keys, VectorValues *delta) |
template<class S , class V , class W > | |
double | lineSearch (const S &system, const V currentValues, const W &gradient) |
Implement the golden-section line search algorithm. | |
template<class S , class V > | |
boost::tuple< V, int > | nonlinearConjugateGradient (const S &system, const V &initial, const NonlinearOptimizerParams ¶ms, const bool singleIteration, const bool gradientDescent=false) |
Implement the nonlinear conjugate gradient method using the Polak-Ribiere formula suggested in http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method. More... | |
bool | checkConvergence (double relativeErrorTreshold, double absoluteErrorTreshold, double errorThreshold, double currentError, double newError, NonlinearOptimizerParams::Verbosity verbosity=NonlinearOptimizerParams::SILENT) |
Check whether the relative error decrease is less than relativeErrorTreshold, the absolute error decrease is less than absoluteErrorTreshold, or the error itself is less than errorThreshold. | |
GTSAM_EXPORT bool | checkConvergence (const NonlinearOptimizerParams ¶ms, double currentError, double newError) |
string | findExampleDataFile (const std::string &name) |
Find the full path to an example dataset distributed with gtsam. More... | |
string | createRewrittenFileName (const std::string &name) |
Creates a temporary file name that needs to be ignored in .gitingnore for checking read-write oprations. | |
GraphAndValues | load2D (pair< string, SharedNoiseModel > dataset, int maxID, bool addNoise, bool smart, NoiseFormat noiseFormat, KernelFunctionType kernelFunctionType) |
Load TORO 2D Graph. More... | |
boost::optional< IndexedPose > | parseVertex (std::istream &is, const std::string &tag) |
Parse TORO/G2O vertex "id x y yaw". More... | |
boost::optional< IndexedEdge > | parseEdge (std::istream &is, const std::string &tag) |
Parse TORO/G2O edge "id1 id2 x y yaw". More... | |
GraphAndValues | load2D (const std::string &filename, SharedNoiseModel model=SharedNoiseModel(), Key maxID=0, bool addNoise=false, bool smart=true, NoiseFormat noiseFormat=NoiseFormatAUTO, KernelFunctionType kernelFunctionType=KernelFunctionTypeNONE) |
Load TORO/G2O style graph files. More... | |
GraphAndValues | load2D_robust (const string &filename, noiseModel::Base::shared_ptr &model, int maxID) |
void | save2D (const NonlinearFactorGraph &graph, const Values &config, const noiseModel::Diagonal::shared_ptr model, const std::string &filename) |
save 2d graph | |
GraphAndValues | readG2o (const std::string &g2oFile, const bool is3D=false, KernelFunctionType kernelFunctionType=KernelFunctionTypeNONE) |
This function parses a g2o file and stores the measurements into a NonlinearFactorGraph and the initial guess in a Values structure. More... | |
void | writeG2o (const NonlinearFactorGraph &graph, const Values &estimate, const std::string &filename) |
This function writes a g2o file from NonlinearFactorGraph and a Values structure. More... | |
std::map< Key, Pose3 > | parse3DPoses (const std::string &filename) |
Parse vertices in 3D TORO graph file into a map of Pose3s. | |
BetweenFactorPose3s | parse3DFactors (const string &filename) |
GraphAndValues | load3D (const std::string &filename) |
Load TORO 3D Graph. | |
Rot3 | openGLFixedRotation () |
Pose3 | openGL2gtsam (const Rot3 &R, double tx, double ty, double tz) |
This function converts an openGL camera pose to an GTSAM camera pose. More... | |
Pose3 | gtsam2openGL (const Rot3 &R, double tx, double ty, double tz) |
This function converts a GTSAM camera pose to an openGL camera pose. More... | |
Pose3 | gtsam2openGL (const Pose3 &PoseGTSAM) |
This function converts a GTSAM camera pose to an openGL camera pose. More... | |
bool | readBundler (const std::string &filename, SfM_data &data) |
This function parses a bundler output file and stores the data into a SfM_data structure. More... | |
bool | readBAL (const std::string &filename, SfM_data &data) |
This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a SfM_data structure. More... | |
bool | writeBAL (const std::string &filename, SfM_data &data) |
This function writes a "Bundle Adjustment in the Large" (BAL) file from a SfM_data structure. More... | |
bool | writeBALfromValues (const std::string &filename, const SfM_data &data, Values &values) |
This function writes a "Bundle Adjustment in the Large" (BAL) file from a SfM_data structure and a value structure (measurements are the same as the SfM input data, while camera poses and values are read from Values) More... | |
Values | initialCamerasEstimate (const SfM_data &db) |
This function creates initial values for cameras from db. More... | |
Values | initialCamerasAndPointsEstimate (const SfM_data &db) |
This function creates initial values for cameras and points from db. More... | |
GTSAM_EXPORT GraphAndValues | load2D (std::pair< std::string, SharedNoiseModel > dataset, int maxID=0, bool addNoise=false, bool smart=true, NoiseFormat noiseFormat=NoiseFormatAUTO, KernelFunctionType kernelFunctionType=KernelFunctionTypeNONE) |
Load TORO 2D Graph. More... | |
Point2_ | transformTo (const Pose2_ &x, const Point2_ &p) |
Point3_ | transformTo (const Pose3_ &x, const Point3_ &p) |
Point3_ | transformFrom (const Pose3_ &x, const Point3_ &p) |
Point3_ | rotate (const Rot3_ &x, const Point3_ &p) |
Point3_ | unrotate (const Rot3_ &x, const Point3_ &p) |
Point2_ | project (const Point3_ &p_cam) |
Expression version of PinholeBase::Project. | |
Point2_ | project (const Unit3_ &p_cam) |
template<class CAMERA , class POINT > | |
Point2_ | project2 (const Expression< CAMERA > &camera_, const Expression< POINT > &p_) |
template<class CALIBRATION , class POINT > | |
Point2_ | project3 (const Pose3_ &x, const Expression< POINT > &p, const Expression< CALIBRATION > &K) |
template<class CALIBRATION > | |
Point2_ | uncalibrate (const Expression< CALIBRATION > &K, const Point2_ &xy_hat) |
template<class T , class P > | |
P | transform_point (const T &trans, const P &global, boost::optional< Matrix & > Dtrans, boost::optional< Matrix & > Dglobal) |
Transform function that must be specialized specific domains. More... | |
std::pair< boost::shared_ptr< SymbolicConditional >, boost::shared_ptr< SymbolicFactor > > | EliminateSymbolic (const SymbolicFactorGraph &factors, const Ordering &keys) |
Dense elimination function for symbolic factors. More... | |
template<class PROBLEM > | |
Key | maxKey (const PROBLEM &problem) |
Find the max key in a problem. More... | |
template<class LinearGraph > | |
KeyDimMap | collectKeyDim (const LinearGraph &linearGraph) |
void | synchronize (ConcurrentFilter &filter, ConcurrentSmoother &smoother) |
void | recursiveMarkAffectedKeys (const Key &key, const ISAM2Clique::shared_ptr &clique, std::set< Key > &additionalKeys) |
std::string | serializeGraph (const NonlinearFactorGraph &graph) |
NonlinearFactorGraph::shared_ptr | deserializeGraph (const std::string &serialized_graph) |
std::string | serializeGraphXML (const NonlinearFactorGraph &graph, const std::string &name="graph") |
NonlinearFactorGraph::shared_ptr | deserializeGraphXML (const std::string &serialized_graph, const std::string &name="graph") |
std::string | serializeValues (const Values &values) |
Values::shared_ptr | deserializeValues (const std::string &serialized_values) |
std::string | serializeValuesXML (const Values &values, const std::string &name="values") |
Values::shared_ptr | deserializeValuesXML (const std::string &serialized_values, const std::string &name="values") |
bool | serializeGraphToFile (const NonlinearFactorGraph &graph, const std::string &fname) |
bool | serializeGraphToXMLFile (const NonlinearFactorGraph &graph, const std::string &fname, const std::string &name="graph") |
bool | serializeValuesToFile (const Values &values, const std::string &fname) |
bool | serializeValuesToXMLFile (const Values &values, const std::string &fname, const std::string &name="values") |
NonlinearFactorGraph::shared_ptr | deserializeGraphFromFile (const std::string &fname) |
NonlinearFactorGraph::shared_ptr | deserializeGraphFromXMLFile (const std::string &fname, const std::string &name="graph") |
Values::shared_ptr | deserializeValuesFromFile (const std::string &fname) |
Values::shared_ptr | deserializeValuesFromXMLFile (const std::string &fname, const std::string &name="values") |
double | bound (double a, double min, double max) |
utility functions | |
VectorValues | buildVectorValues (const Vector &v, const Ordering &ordering, const std::map< Key, size_t > &dimensions) |
Create VectorValues from a Vector. | |
VectorValues | buildVectorValues (const Vector &v, const KeyInfo &keyInfo) |
Create VectorValues from a Vector and a KeyInfo class. | |
Variables | |
GTSAM_EXPORT FastMap< std::string, ValueWithDefault< bool, false > > | debugFlags |
const G & | b |
const G double | tol |
const double | logSqrt2PI = log(std::sqrt(2.0 * M_PI)) |
constant needed below | |
Global functions in a separate testing namespace.
Matrix is a typedef in the gtsam namespace TODO: make a version to work with matlab wrapping we use the default < double,col_major,unbounded_array<double> >
These should not be used outside of tests, as they are just remappings of the original functions. We use these to avoid needing to do too much boost::bind magic or writing a bunch of separate proxy functions.
Don't expect all classes to work for all of these functions.
typedef noiseModel::Base::shared_ptr gtsam::SharedNoiseModel |
Note, deliberately not in noiseModel namespace.
Deprecated. Only for compatibility with previous version.
typedef Vector3 gtsam::Velocity3 |
Velocity is currently typedef'd to Vector3.
Syntactic sugar to clarify components.
SmartFactorParams: parameters and (linearization/degeneracy) modes for SmartProjection and SmartStereoProjection factors.
Linearization mode: what factor to linearize to
enum gtsam::NoiseFormat |
Indicates how noise parameters are stored in file.
bool gtsam::assert_equal | ( | const boost::optional< V > & | expected, |
const boost::optional< V > & | actual, | ||
double | tol = 1e-9 |
||
) |
Comparisons for boost.optional objects that checks whether objects exist before comparing their values.
First version allows for both to be boost::none, but the second, with expected given rather than optional
Concept requirement: V is testable
bool gtsam::assert_equal | ( | const std::vector< V > & | expected, |
const std::vector< V > & | actual, | ||
double | tol = 1e-9 |
||
) |
Version of assert_equals to work with vectors.
GTSAM_EXPORT bool gtsam::assert_equal | ( | const Vector & | vec1, |
const Vector & | vec2, | ||
double | tol = 1e-9 |
||
) |
Same, prints if error.
vec1 | Vector |
vec2 | Vector |
tol | 1e-9 |
GTSAM_EXPORT bool gtsam::assert_equal | ( | const SubVector & | vec1, |
const SubVector & | vec2, | ||
double | tol = 1e-9 |
||
) |
Same, prints if error.
vec1 | Vector |
vec2 | Vector |
tol | 1e-9 |
GTSAM_EXPORT bool gtsam::assert_inequal | ( | const Vector & | vec1, |
const Vector & | vec2, | ||
double | tol = 1e-9 |
||
) |
Not the same, prints if error.
vec1 | Vector |
vec2 | Vector |
tol | 1e-9 |
|
inline |
BLAS Level 1 axpy: y <- alpha*x + y.
GTSAM_EXPORT Vector gtsam::backSubstituteLower | ( | const Matrix & | L, |
const Vector & | b, | ||
bool | unit = false |
||
) |
backSubstitute L*x=b
L | an lower triangular matrix |
b | an RHS vector |
unit,set | true if unit triangular |
GTSAM_EXPORT Vector gtsam::backSubstituteUpper | ( | const Matrix & | U, |
const Vector & | b, | ||
bool | unit = false |
||
) |
backSubstitute U*x=b
U | an upper triangular matrix |
b | an RHS vector |
unit,set | true if unit triangular |
GTSAM_EXPORT Vector gtsam::backSubstituteUpper | ( | const Vector & | b, |
const Matrix & | U, | ||
bool | unit = false |
||
) |
backSubstitute x'*U=b'
U | an upper triangular matrix |
b | an RHS vector |
unit,set | true if unit triangular |
T gtsam::BCH | ( | const T & | X, |
const T & | Y | ||
) |
Three term approximation of the Baker-Campbell-Hausdorff formula In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y) it is not true that Z = X+Y.
Instead, Z can be calculated using the BCH formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24 http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formulaAGC: bracket() only appears in Rot3 tests, should this be used elsewhere?
|
inline |
These core global functions can be specialized by new Lie types for better performance.
Compute l0 s.t. l2=l1*l0
boost::shared_ptr< GaussianFactorGraph > gtsam::buildFactorSubgraph | ( | const GaussianFactorGraph & | gfg, |
const Subgraph & | subgraph, | ||
const bool | clone | ||
) |
Select the factors in a factor graph according to the subgraph.
std::vector<Assignment<L> > gtsam::cartesianProduct | ( | const std::vector< std::pair< L, size_t > > & | keys | ) |
Get Cartesian product consisting all possible configurations.
vector | list of keys (label,cardinality) pairs. |
This function returns a vector of Assignment values for all possible (Cartesian product) configurations of set of Keys which are nothing but (Label,cardinality) pairs. This function should NOT be called for more than a small number of variables and cardinalities. E.g. For 6 variables with each having cardinalities 4, we get 4096 possible configurations!!
GTSAM_EXPORT Matrix gtsam::cholesky_inverse | ( | const Matrix & | A | ) |
Return the inverse of a S.P.D.
matrix. Inversion is done via Cholesky decomposition.
GTSAM_EXPORT std::pair< size_t, bool > gtsam::choleskyCareful | ( | Matrix & | ATA, |
int | order = -1 |
||
) |
"Careful" Cholesky computes the positive square-root of a positive symmetric semi-definite matrix (i.e.
that may be rank-deficient). Unlike standard Cholesky, the square-root factor may have all-zero rows for free variables.
Additionally, this function returns the index of the row after the last non-zero row in the computed factor, so that it may be truncated to an upper-trapazoidal matrix.
The second element of the return value is true
if the matrix was factored successfully, or false
if it was non-positive-semidefinite (i.e. indefinite or negative-(semi-)definite.
Note that this returned index is the rank of the matrix if and only if all of the zero-rows of the factor occur after any non-zero rows. This is (always?) the case during elimination of a fully-constrained least-squares problem.
The optional order argument specifies the size of the square upper-left submatrix to operate on, ignoring the rest of the matrix.
GTSAM_EXPORT bool gtsam::choleskyPartial | ( | Matrix & | ABC, |
size_t | nFrontal, | ||
size_t | topleft = 0 |
||
) |
Partial Cholesky computes a factor [R S such that [R' 0 [R S = [A B 0 L] S' I] 0 L] B' C].
The input to this function is the matrix ABC = [A B], and the parameter [B' C] nFrontal determines the split between A, B, and C, with A being of size nFrontal x nFrontal.
if non-zero, factorization proceeds in bottom-right corner starting at topleft
true
if the decomposition is successful, false
if A
was not positive-definite. GTSAM_EXPORT std::list< Point2 > gtsam::circleCircleIntersection | ( | Point2 | c1, |
double | r1, | ||
Point2 | c2, | ||
double | r2, | ||
double | tol = 1e-9 |
||
) |
Intersect 2 circles.
c1 | center of first circle |
r1 | radius of first circle |
c2 | center of second circle |
r2 | radius of second circle |
tol | absolute tolerance below which we consider touching circles |
GTSAM_EXPORT Matrix gtsam::collect | ( | const std::vector< const Matrix * > & | matrices, |
size_t | m = 0 , |
||
size_t | n = 0 |
||
) |
create a matrix by concatenating Given a set of matrices: A1, A2, A3...
If all matrices have the same size, specifying single matrix dimensions will avoid the lookup of dimensions
matrices | is a vector of matrices in the order to be collected |
m | is the number of rows of a single matrix |
n | is the number of columns of a single matrix |
const MATRIX::ConstColXpr gtsam::column | ( | const MATRIX & | A, |
size_t | j | ||
) |
Extracts a column view from a matrix that avoids a copy.
A | matrix to extract column from |
j | index of the column |
V gtsam::conjugateGradients | ( | const S & | Ab, |
V | x, | ||
const ConjugateGradientParameters & | parameters, | ||
bool | steepest = false |
||
) |
Method of conjugate gradients (CG) template "System" class S needs gradient(S,v), e=S*v, v=S^e "Vector" class V needs dot(v,v), -v, v+v, s*v "Vector" class E needs dot(v,v)
Ab,the | "system" that needs to be solved, examples below |
x | is the initial estimate |
steepest | flag, if true does steepest descent, not CG |
std::vector< Expression< T > > gtsam::createUnknowns | ( | size_t | n, |
char | c, | ||
size_t | start | ||
) |
Construct an array of leaves.
Construct an array of unknown expressions with successive symbol keys Example: createUnknowns<Pose2>(3,'x') creates unknown expressions for x0,x1,x2.
GTSAM_EXPORT Point3 gtsam::cross | ( | const Point3 & | p, |
const Point3 & | q, | ||
OptionalJacobian< 3, 3 > | H_p = boost::none , |
||
OptionalJacobian< 3, 3 > | H_q = boost::none |
||
) |
cross product
GTSAM_EXPORT boost::tuple< int, double, Vector > gtsam::DLT | ( | const Matrix & | A, |
double | rank_tol = 1e-9 |
||
) |
Direct linear transform algorithm that calls svd to find a vector v that minimizes the algebraic error A*v.
A | of size m*n, where m>=n (pad with zero rows if not!) Returns rank of A, minimum error (singular value), and corresponding eigenvector (column of V, with A=U*S*V') |
GTSAM_EXPORT Vector gtsam::ediv_ | ( | const Vector & | a, |
const Vector & | b | ||
) |
elementwise division, but 0/0 = 0, not inf
a | first vector |
b | second vector |
GTSAM_EXPORT std::pair< boost::shared_ptr< GaussianConditional >, boost::shared_ptr< JacobianFactor > > gtsam::EliminateQR | ( | const GaussianFactorGraph & | factors, |
const Ordering & | keys | ||
) |
Multiply all factors and eliminate the given keys from the resulting factor using a QR variant that handles constraints (zero sigmas).
Computation happens in noiseModel::Gaussian::QR Returns a conditional on those keys, and a new factor on the separator.
GTSAM_EXPORT std::pair< boost::shared_ptr< SymbolicConditional >, boost::shared_ptr< SymbolicFactor > > gtsam::EliminateSymbolic | ( | const SymbolicFactorGraph & | factors, |
const Ordering & | keys | ||
) |
Dense elimination function for symbolic factors.
This is usually provided as an argument to one of the factor graph elimination functions (see EliminateableFactorGraph). The factor graph elimination functions do sparse variable elimination, and use this function to eliminate single variables or variable cliques.
T gtsam::expm | ( | const Vector & | x, |
int | K = 7 |
||
) |
Exponential map given exponential coordinates class T needs a wedge<> function and a constructor from Matrix.
x | exponential coordinates, vector of size n @ return a T |
GTSAM_EXPORT Matrix gtsam::expm | ( | const Matrix & | A, |
size_t | K = 7 |
||
) |
Numerical exponential map, naive approach, not industrial strength !!!
A | matrix to exponentiate |
K | number of iterations |
|
inline |
Exponential map centered at l0, s.t.
exp(t,d) = t*exp(d)
GTSAM_EXPORT std::string gtsam::findExampleDataFile | ( | const std::string & | name | ) |
Find the full path to an example dataset distributed with gtsam.
The name may be specified with or without a file extension - if no extension is given, this function first looks for the .graph extension, then .txt. We first check the gtsam source tree for the file, followed by the installed example dataset location. Both the source tree and installed locations are obtained from CMake during compilation.
std::invalid_argument | if no matching file could be found using the search process described above. |
This function converts a GTSAM camera pose to an openGL camera pose.
R | rotation in GTSAM |
tx | x component of the translation in GTSAM |
ty | y component of the translation in GTSAM |
tz | z component of the translation in GTSAM |
This function converts a GTSAM camera pose to an openGL camera pose.
PoseGTSAM | pose in GTSAM format |
GTSAM_EXPORT bool gtsam::hasConstraints | ( | const GaussianFactorGraph & | factors | ) |
Evaluates whether linear factors have any constrained noise models.
GTSAM_EXPORT std::pair< double, Vector > gtsam::house | ( | const Vector & | x | ) |
house(x,j) computes HouseHolder vector v and scaling factor beta from x, such that the corresponding Householder reflection zeroes out all but x.
(j), j is base 0. Golub & Van Loan p 210.
GTSAM_EXPORT void gtsam::householder | ( | Matrix & | A, |
size_t | k | ||
) |
Householder tranformation, zeros below diagonal.
k | number of columns to zero out below diagonal |
A | matrix |
GTSAM_EXPORT void gtsam::householder_ | ( | Matrix & | A, |
size_t | k, | ||
bool | copy_vectors = true |
||
) |
Imperative version of Householder QR factorization, Golub & Van Loan p 224 version with Householder vectors below diagonal, as in GVL.
Householder transformation, Householder vectors below diagonal.
k | number of columns to zero out below diagonal |
A | matrix |
copy_vectors | - true to copy Householder vectors below diagonal |
void gtsam::inplace_QR | ( | Matrix & | A | ) |
QR factorization using Eigen's internal block QR algorithm.
A | is the input matrix, and is the output |
clear_below_diagonal | enables zeroing out below diagonal |
void gtsam::insertSub | ( | Eigen::MatrixBase< Derived1 > & | fullMatrix, |
const Eigen::MatrixBase< Derived2 > & | subMatrix, | ||
size_t | i, | ||
size_t | j | ||
) |
insert a submatrix IN PLACE at a specified location in a larger matrix NOTE: there is no size checking
fullMatrix | matrix to be updated |
subMatrix | matrix to be inserted |
i | is the row of the upper left corner insert location |
j | is the column of the upper left corner insert location |
GTSAM_EXPORT bool gtsam::linear_dependent | ( | const Vector & | vec1, |
const Vector & | vec2, | ||
double | tol = 1e-9 |
||
) |
check whether two vectors are linearly dependent
vec1 | Vector |
vec2 | Vector |
tol | 1e-9 |
Expression<T> gtsam::linearExpression | ( | const boost::function< T(A)> & | f, |
const Expression< A > & | expression, | ||
const Eigen::Matrix< double, traits< T >::dimension, traits< A >::dimension > & | dTdA | ||
) |
Create an expression out of a linear function f:T->A with (constant) Jacobian dTdA TODO(frank): create a more efficient version like ScalarMultiplyExpression.
This version still does a malloc every linearize.
JacobianFactor gtsam::linearizeNumerically | ( | const NoiseModelFactor & | factor, |
const Values & | values, | ||
double | delta = 1e-5 |
||
) |
Linearize a nonlinear factor using numerical differentiation The benefit of this method is that it does not need to know what types are involved to evaluate the factor.
If all the machinery of gtsam is working correctly, we should get the correct numerical derivatives out the other side. NOTE(frank): factors that have non vector-space measurements use between or LocalCoordinates to evaluate the error, and their derivatives will only be correct for near-zero errors. This is fixable but expensive, and does not matter in practice as most factors will sit near zero errors anyway. However, it means that below will only be exact for the correct measurement.
ListOfOneContainer<T> gtsam::ListOfOne | ( | const T & | element | ) |
Factory function for ListOfOneContainer to enable ListOfOne(e) syntax.
GraphAndValues gtsam::load2D | ( | std::pair< std::string, SharedNoiseModel > | dataset, |
int | maxID = 0 , |
||
bool | addNoise = false , |
||
bool | smart = true , |
||
NoiseFormat | noiseFormat = NoiseFormatAUTO , |
||
KernelFunctionType | kernelFunctionType = KernelFunctionTypeNONE |
||
) |
Load TORO 2D Graph.
dataset/model | pair as constructed by [dataset] |
maxID | if non-zero cut out vertices >= maxID |
addNoise | add noise to the edges |
smart | try to reduce complexity of covariance to cheapest model |
GTSAM_EXPORT GraphAndValues gtsam::load2D | ( | std::pair< std::string, SharedNoiseModel > | dataset, |
int | maxID = 0 , |
||
bool | addNoise = false , |
||
bool | smart = true , |
||
NoiseFormat | noiseFormat = NoiseFormatAUTO , |
||
KernelFunctionType | kernelFunctionType = KernelFunctionTypeNONE |
||
) |
Load TORO 2D Graph.
dataset/model | pair as constructed by [dataset] |
maxID | if non-zero cut out vertices >= maxID |
addNoise | add noise to the edges |
smart | try to reduce complexity of covariance to cheapest model |
GTSAM_EXPORT GraphAndValues gtsam::load2D | ( | const std::string & | filename, |
SharedNoiseModel | model = SharedNoiseModel() , |
||
Key | maxID = 0 , |
||
bool | addNoise = false , |
||
bool | smart = true , |
||
NoiseFormat | noiseFormat = NoiseFormatAUTO , |
||
KernelFunctionType | kernelFunctionType = KernelFunctionTypeNONE |
||
) |
Load TORO/G2O style graph files.
filename | |
model | optional noise model to use instead of one specified by file |
maxID | if non-zero cut out vertices >= maxID |
addNoise | add noise to the edges |
smart | try to reduce complexity of covariance to cheapest model |
noiseFormat | how noise parameters are stored |
kernelFunctionType | whether to wrap the noise model in a robust kernel |
GTSAM_EXPORT GraphAndValues gtsam::load2D_robust | ( | const std::string & | filename, |
noiseModel::Base::shared_ptr & | model, | ||
int | maxID = 0 |
||
) |
|
inline |
Log map centered at l0, s.t.
exp(l0,log(l0,lp)) = lp
Key gtsam::maxKey | ( | const PROBLEM & | problem | ) |
Find the max key in a problem.
Useful to determine unique keys for additional slack variables
|
inline |
Create a symbol key from a character, label and index, i.e.
xA5.
|
inline |
Return the character portion of a symbol key.
|
inline |
Return the index portion of a symbol key.
|
inline |
Return the label portion of a symbol key.
boost::tuple<V, int> gtsam::nonlinearConjugateGradient | ( | const S & | system, |
const V & | initial, | ||
const NonlinearOptimizerParams & | params, | ||
const bool | singleIteration, | ||
const bool | gradientDescent = false |
||
) |
Implement the nonlinear conjugate gradient method using the Polak-Ribiere formula suggested in http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method.
The S (system) class requires three member functions: error(state), gradient(state) and advance(state, step-size, direction). The V class denotes the state or the solution.
The last parameter is a switch between gradient-descent and conjugate gradient
internal::FixedSizeMatrix<Y, X>::type gtsam::numericalDerivative11 | ( | boost::function< Y(const X &)> | h, |
const X & | x, | ||
double | delta = 1e-5 |
||
) |
New-style numerical derivatives using manifold_traits.
Computes numerical derivative in argument 1 of unary function
h | unary function yielding m-vector |
x | n-dimensional value at which to evaluate h |
delta | increment for numerical derivative Class Y is the output argument Class X is the input argument int N is the dimension of the X input value if variable dimension type but known at test time |
internal::FixedSizeMatrix<Y,X1>::type gtsam::numericalDerivative21 | ( | const boost::function< Y(const X1 &, const X2 &)> & | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 1 of binary function.
h | binary function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X2>::type gtsam::numericalDerivative22 | ( | boost::function< Y(const X1 &, const X2 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 2 of binary function.
h | binary function yielding m-vector |
x1 | first argument value |
x2 | n-dimensional second argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X1>::type gtsam::numericalDerivative31 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 1 of ternary function.
h | ternary function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X2>::type gtsam::numericalDerivative32 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 2 of ternary function.
h | ternary function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X3>::type gtsam::numericalDerivative33 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 3 of ternary function.
h | ternary function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X1>::type gtsam::numericalDerivative41 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 1 of 4-argument function.
h | quartic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X2>::type gtsam::numericalDerivative42 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 2 of 4-argument function.
h | quartic function yielding m-vector |
x1 | first argument value |
x2 | n-dimensional second argument value |
x3 | third argument value |
x4 | fourth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X3>::type gtsam::numericalDerivative43 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 3 of 4-argument function.
h | quartic function yielding m-vector |
x1 | first argument value |
x2 | second argument value |
x3 | n-dimensional third argument value |
x4 | fourth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X4>::type gtsam::numericalDerivative44 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 4 of 4-argument function.
h | quartic function yielding m-vector |
x1 | first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | n-dimensional fourth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X1>::type gtsam::numericalDerivative51 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
const X5 & | x5, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 1 of 5-argument function.
h | quintic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
x5 | fifth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X2>::type gtsam::numericalDerivative52 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
const X5 & | x5, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 2 of 5-argument function.
h | quintic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
x5 | fifth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X3>::type gtsam::numericalDerivative53 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
const X5 & | x5, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 3 of 5-argument function.
h | quintic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
x5 | fifth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X4>::type gtsam::numericalDerivative54 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
const X5 & | x5, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 4 of 5-argument function.
h | quintic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
x5 | fifth argument value |
delta | increment for numerical derivative |
internal::FixedSizeMatrix<Y,X5>::type gtsam::numericalDerivative55 | ( | boost::function< Y(const X1 &, const X2 &, const X3 &, const X4 &, const X5 &)> | h, |
const X1 & | x1, | ||
const X2 & | x2, | ||
const X3 & | x3, | ||
const X4 & | x4, | ||
const X5 & | x5, | ||
double | delta = 1e-5 |
||
) |
Compute numerical derivative in argument 5 of 5-argument function.
h | quintic function yielding m-vector |
x1 | n-dimensional first argument value |
x2 | second argument value |
x3 | third argument value |
x4 | fourth argument value |
x5 | fifth argument value |
delta | increment for numerical derivative |
Eigen::Matrix<double, N, 1> gtsam::numericalGradient | ( | boost::function< double(const X &)> | h, |
const X & | x, | ||
double | delta = 1e-5 |
||
) |
Numerically compute gradient of scalar function.
|
inline |
Compute numerical Hessian matrix.
Requires a single-argument Lie->scalar function. This is implemented simply as the derivative of the gradient.
f | A function taking a Lie object as input and returning a scalar |
x | The center point for computing the Hessian |
delta | The numerical derivative step size |
This function converts an openGL camera pose to an GTSAM camera pose.
R | rotation in openGL |
tx | x component of the translation in openGL |
ty | y component of the translation in openGL |
tz | z component of the translation in openGL |
Expression< T > gtsam::operator * | ( | const Expression< T > & | expression1, |
const Expression< T > & | expression2 | ||
) |
Construct a product expression, assumes T::compose(T) -> T.
Construct a product expression, assumes T::compose(T) -> T Example: Expression<Point2> a(0), b(1), c = a*b;.
VectorValues gtsam::operator * | ( | const double | a, |
const VectorValues & | v | ||
) |
GTSAM_EXPORT std::istream & gtsam::operator>> | ( | std::istream & | inputStream, |
Matrix & | destinationMatrix | ||
) |
Read a matrix from an input stream, such as a file.
Entries can be either tab-, space-, or comma-separated, similar to the format read by the MATLAB dlmread command.
GTSAM_EXPORT Point3 gtsam::optimize | ( | const NonlinearFactorGraph & | graph, |
const Values & | values, | ||
Key | landmarkKey | ||
) |
Optimize for triangulation.
graph | nonlinear factors for projection |
values | initial values |
landmarkKey | to refer to landmark |
size_t gtsam::optimizeWildfire | ( | const ISAM2Clique::shared_ptr & | root, |
double | threshold, | ||
const KeySet & | replaced, | ||
VectorValues * | delta | ||
) |
Optimize the BayesTree, starting from the root.
threshold | The maximum change against the PREVIOUS delta for non-replaced variables that can be ignored, ie. the old delta entry is kept and recursive backsubstitution might eventually stop if none of the changed variables are contained in the subtree. |
replaced | Needs to contain all variables that are contained in the top of the Bayes tree that has been redone. |
delta | The current solution, an offset from the linearization point. |
GTSAM_EXPORT boost::optional< IndexedEdge > gtsam::parseEdge | ( | std::istream & | is, |
const std::string & | tag | ||
) |
Parse TORO/G2O edge "id1 id2 x y yaw".
is | input stream |
tag | string parsed from input stream, will only parse if edge type |
GTSAM_EXPORT boost::optional< IndexedPose > gtsam::parseVertex | ( | std::istream & | is, |
const std::string & | tag | ||
) |
Parse TORO/G2O vertex "id x y yaw".
is | input stream |
tag | string parsed from input stream, will only parse if vertex type |
boost::tuple< G, V, std::map< KEY, V > > gtsam::predecessorMap2Graph | ( | const PredecessorMap< KEY > & | p_map | ) |
Build takes a predecessor map, and builds a directed graph corresponding to the tree.
G = Graph type V = Vertex type
GTSAM_EXPORT std::pair< Matrix, Matrix > gtsam::qr | ( | const Matrix & | A | ) |
Householder QR factorization, Golub & Van Loan p 224, explicit version.
QR factorization, inefficient, best use imperative householder below m*n matrix -> m*m Q, m*n R.
A | a matrix |
GTSAM_EXPORT bool gtsam::readBAL | ( | const std::string & | filename, |
SfM_data & | data | ||
) |
This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a SfM_data structure.
filename | The name of the BAL file |
data | SfM structure where the data is stored |
GTSAM_EXPORT bool gtsam::readBundler | ( | const std::string & | filename, |
SfM_data & | data | ||
) |
This function parses a bundler output file and stores the data into a SfM_data structure.
filename | The name of the bundler file |
data | SfM structure where the data is stored |
GTSAM_EXPORT GraphAndValues gtsam::readG2o | ( | const std::string & | g2oFile, |
const bool | is3D = false , |
||
KernelFunctionType | kernelFunctionType = KernelFunctionTypeNONE |
||
) |
This function parses a g2o file and stores the measurements into a NonlinearFactorGraph and the initial guess in a Values structure.
filename | The name of the g2o file\ |
is3D | indicates if the file describes a 2D or 3D problem |
kernelFunctionType | whether to wrap the noise model in a robust kernel |
const MATRIX::ConstRowXpr gtsam::row | ( | const MATRIX & | A, |
size_t | j | ||
) |
Extracts a row view from a matrix that avoids a copy.
A | matrix to extract row from |
j | index of the row |
GTSAM_EXPORT std::pair< Matrix3, Vector3 > gtsam::RQ | ( | const Matrix3 & | A | ) |
[RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx' such that A = R*Q = R*Qz'*Qy'*Qx'.
When A is a rotation matrix, R will be the identity and Q is a yaw-pitch-roll decomposition of A. The implementation uses Givens rotations and is based on Hartley-Zisserman.
A | 3 by 3 matrix A=RQ |
|
inline |
BLAS Level 1 scal: x <- alpha*x.
|
inline |
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0
wx | 3 dimensional vector |
wy | |
wz |
std::pair< boost::shared_ptr< GaussianFactorGraph >, boost::shared_ptr< GaussianFactorGraph > > gtsam::splitFactorGraph | ( | const GaussianFactorGraph & | factorGraph, |
const Subgraph & | subgraph | ||
) |
Split the graph into a subgraph and the remaining edges.
Note that the remaining factorgraph has null factors.
GTSAM_EXPORT Matrix gtsam::stack | ( | size_t | nrMatrices, |
... | |||
) |
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
... | pointers to matrices to be stacked |
GTSAM_EXPORT Vector gtsam::steepestDescent | ( | const Matrix & | A, |
const Vector & | b, | ||
const Vector & | x, | ||
const ConjugateGradientParameters & | parameters | ||
) |
convenience calls using matrices, will create System class internally:
Method of steepest gradients, Matrix version
Eigen::Block<const MATRIX> gtsam::sub | ( | const MATRIX & | A, |
size_t | i1, | ||
size_t | i2, | ||
size_t | j1, | ||
size_t | j2 | ||
) |
extract submatrix, slice semantics, i.e.
range = [i1,i2[ excluding i2
A | matrix |
i1 | first row index |
i2 | last row index + 1 |
j1 | first col index |
j2 | last col index + 1 |
GTSAM_EXPORT void gtsam::svd | ( | const Matrix & | A, |
Matrix & | U, | ||
Vector & | S, | ||
Matrix & | V | ||
) |
SVD computes economy SVD A=U*S*V'.
A | an m*n matrix |
U | output argument: rotation matrix |
S | output argument: sorted vector of singular values |
V | output argument: rotation matrix if m > n then U*S*V' = (m*n)*(n*n)*(n*n) if m < n then U*S*V' = (m*m)*(m*m)*(m*n) Careful! The dimensions above reflect V', not V, which is n*m if m<n. U is a basis in R^m, V is a basis in R^n You can just pass empty matrices U,V, and vector S, they will be re-allocated. |
|
inline |
Create a symbol key from a character and index, i.e.
x5.
|
inline |
Return the character portion of a symbol key.
|
inline |
Return the index portion of a symbol key.
P gtsam::transform_point | ( | const T & | trans, |
const P & | global, | ||
boost::optional< Matrix & > | Dtrans, | ||
boost::optional< Matrix & > | Dglobal | ||
) |
Transform function that must be specialized specific domains.
T | is a Transform type |
P | is a point type |
GTSAM_EXPORT Point3 gtsam::triangulateDLT | ( | const std::vector< Matrix34, Eigen::aligned_allocator< Matrix34 >> & | projection_matrices, |
const Point2Vector & | measurements, | ||
double | rank_tol = 1e-9 |
||
) |
DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312.
projection_matrices | Projection matrices (K*P^-1) |
measurements | 2D measurements |
rank_tol | SVD rank tolerance |
GTSAM_EXPORT Vector4 gtsam::triangulateHomogeneousDLT | ( | const std::vector< Matrix34, Eigen::aligned_allocator< Matrix34 >> & | projection_matrices, |
const Point2Vector & | measurements, | ||
double | rank_tol = 1e-9 |
||
) |
DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312.
projection_matrices | Projection matrices (K*P^-1) |
measurements | 2D measurements |
rank_tol | SVD rank tolerance |
Point3 gtsam::triangulateNonlinear | ( | const std::vector< Pose3 > & | poses, |
boost::shared_ptr< CALIBRATION > | sharedCal, | ||
const Point2Vector & | measurements, | ||
const Point3 & | initialEstimate | ||
) |
Given an initial estimate , refine a point using measurements in several cameras.
poses | Camera poses |
sharedCal | shared pointer to single calibration object |
measurements | 2D measurements |
initialEstimate |
Point3 gtsam::triangulateNonlinear | ( | const CameraSet< CAMERA > & | cameras, |
const typename CAMERA::MeasurementVector & | measurements, | ||
const Point3 & | initialEstimate | ||
) |
Given an initial estimate , refine a point using measurements in several cameras.
cameras | pinhole cameras (monocular or stereo) |
measurements | 2D measurements |
initialEstimate |
Point3 gtsam::triangulatePoint3 | ( | const std::vector< Pose3 > & | poses, |
boost::shared_ptr< CALIBRATION > | sharedCal, | ||
const Point2Vector & | measurements, | ||
double | rank_tol = 1e-9 , |
||
bool | optimize = false |
||
) |
Function to triangulate 3D landmark point from an arbitrary number of poses (at least 2) using the DLT.
The function checks that the resulting point lies in front of all cameras, but has no other checks to verify the quality of the triangulation.
poses | A vector of camera poses |
sharedCal | shared pointer to single calibration object |
measurements | A vector of camera measurements |
rank_tol | rank tolerance, default 1e-9 |
optimize | Flag to turn on nonlinear refinement of triangulation |
Point3 gtsam::triangulatePoint3 | ( | const CameraSet< CAMERA > & | cameras, |
const typename CAMERA::MeasurementVector & | measurements, | ||
double | rank_tol = 1e-9 , |
||
bool | optimize = false |
||
) |
Function to triangulate 3D landmark point from an arbitrary number of poses (at least 2) using the DLT.
This function is similar to the one above, except that each camera has its own calibration. The function checks that the resulting point lies in front of all cameras, but has no other checks to verify the quality of the triangulation.
cameras | pinhole cameras |
measurements | A vector of camera measurements |
rank_tol | rank tolerance, default 1e-9 |
optimize | Flag to turn on nonlinear refinement of triangulation |
std::pair<NonlinearFactorGraph, Values> gtsam::triangulationGraph | ( | const std::vector< Pose3 > & | poses, |
boost::shared_ptr< CALIBRATION > | sharedCal, | ||
const Point2Vector & | measurements, | ||
Key | landmarkKey, | ||
const Point3 & | initialEstimate | ||
) |
Create a factor graph with projection factors from poses and one calibration.
poses | Camera poses |
sharedCal | shared pointer to single calibration object (monocular only!) |
measurements | 2D measurements |
landmarkKey | to refer to landmark |
initialEstimate |
std::pair<NonlinearFactorGraph, Values> gtsam::triangulationGraph | ( | const CameraSet< CAMERA > & | cameras, |
const typename CAMERA::MeasurementVector & | measurements, | ||
Key | landmarkKey, | ||
const Point3 & | initialEstimate | ||
) |
Create a factor graph with projection factors from pinhole cameras (each camera has a pose and calibration)
cameras | pinhole cameras (monocular or stereo) |
measurements | 2D measurements |
landmarkKey | to refer to landmark |
initialEstimate |
GTSAM_EXPORT void gtsam::vector_scale_inplace | ( | const Vector & | v, |
Matrix & | A, | ||
bool | inf_mask = false |
||
) |
scales a matrix row or column by the values in a vector Arguments (Matrix, Vector) scales the columns, (Vector, Matrix) scales the rows
inf_mask | when true, will not scale with a NaN or inf value. |
|
inline |
wedge for Pose3:
xi | 6-dim twist (omega,v) where omega = 3D angular velocity v = 3D velocity |
GTSAM_EXPORT std::list< boost::tuple< Vector, double, double > > gtsam::weighted_eliminate | ( | Matrix & | A, |
Vector & | b, | ||
const Vector & | sigmas | ||
) |
Imperative algorithm for in-place full elimination with weights and constraint handling.
A | is a matrix to eliminate |
b | is the rhs |
sigmas | is a vector of the measurement standard deviation |
GTSAM_EXPORT std::pair< Vector, double > gtsam::weightedPseudoinverse | ( | const Vector & | v, |
const Vector & | weights | ||
) |
Weighted Householder solution vector, a.k.a., the pseudoinverse of the column NOTE: if any sigmas are zero (indicating a constraint) the pseudoinverse will be a selection vector, and the variance will be zero.
v | is the first column of the matrix to solve |
weights | is a vector of weights/precisions where w=1/(s*s) |
GTSAM_EXPORT bool gtsam::writeBAL | ( | const std::string & | filename, |
SfM_data & | data | ||
) |
This function writes a "Bundle Adjustment in the Large" (BAL) file from a SfM_data structure.
filename | The name of the BAL file to write |
data | SfM structure where the data is stored |
GTSAM_EXPORT bool gtsam::writeBALfromValues | ( | const std::string & | filename, |
const SfM_data & | data, | ||
Values & | values | ||
) |
This function writes a "Bundle Adjustment in the Large" (BAL) file from a SfM_data structure and a value structure (measurements are the same as the SfM input data, while camera poses and values are read from Values)
filename | The name of the BAL file to write |
data | SfM structure where the data is stored |
values | structure where the graph values are stored (values can be either Pose3 or PinholeCamera<Cal3Bundler> for the cameras, and should be Point3 for the 3D points). Note that the current version assumes that the keys are "x1" for pose 1 (or "c1" for camera 1) and "l1" for landmark 1 |
GTSAM_EXPORT void gtsam::writeG2o | ( | const NonlinearFactorGraph & | graph, |
const Values & | estimate, | ||
const std::string & | filename | ||
) |
This function writes a g2o file from NonlinearFactorGraph and a Values structure.
filename | The name of the g2o file to write |
graph | NonlinearFactor graph storing the measurements |
estimate | Values |
void gtsam::zeroBelowDiagonal | ( | MATRIX & | A, |
size_t | cols = 0 |
||
) |
Zeros all of the elements below the diagonal of a matrix, in place.
A | is a matrix, to be modified in place |
cols | is the number of columns to zero, use zero for all columns |