Represents a 3D point on a unit sphere.
|
| Unit3 () |
| Default constructor.
|
|
| Unit3 (const Vector3 &p) |
| Construct from point.
|
|
| Unit3 (double x, double y, double z) |
| Construct from x,y,z.
|
|
| Unit3 (const Point2 &p, double f) |
| Construct from 2D point in plane at focal length f Unit3(p,1) can be viewed as normalized homogeneous coordinates of 2D point.
|
|
| Unit3 (const Unit3 &u) |
| Copy constructor.
|
|
Unit3 & | operator= (const Unit3 &u) |
| Copy assignment.
|
|
static Unit3 | FromPoint3 (const Point3 &point, OptionalJacobian< 2, 3 > H=boost::none) |
| Named constructor from Point3 with optional Jacobian.
|
|
static Unit3 | Random (boost::mt19937 &rng) |
| Random direction, using boost::uniform_on_sphere.
|
|
|
Point3 | operator * (double s, const Unit3 &d) |
| Return scaled direction as Point3.
|
|
const Matrix32 & | basis (OptionalJacobian< 6, 2 > H=boost::none) const |
| Returns the local coordinate frame to tangent plane It is a 3*2 matrix [b1 b2] composed of two orthogonal directions tangent to the sphere at the current direction. More...
|
|
Matrix3 | skew () const |
| Return skew-symmetric associated with 3D point on unit sphere.
|
|
Point3 | point3 (OptionalJacobian< 3, 2 > H=boost::none) const |
| Return unit-norm Point3.
|
|
Vector3 | unitVector (OptionalJacobian< 3, 2 > H=boost::none) const |
| Return unit-norm Vector.
|
|
double | dot (const Unit3 &q, OptionalJacobian< 1, 2 > H1=boost::none, OptionalJacobian< 1, 2 > H2=boost::none) const |
| Return dot product with q.
|
|
Vector2 | error (const Unit3 &q, OptionalJacobian< 2, 2 > H_q=boost::none) const |
| Signed, vector-valued error between two directions. More...
|
|
Vector2 | errorVector (const Unit3 &q, OptionalJacobian< 2, 2 > H_p=boost::none, OptionalJacobian< 2, 2 > H_q=boost::none) const |
| Signed, vector-valued error between two directions NOTE(hayk): This method has zero derivatives if this (p) and q are orthogonal. More...
|
|
double | distance (const Unit3 &q, OptionalJacobian< 1, 2 > H=boost::none) const |
| Distance between two directions.
|
|
Unit3 | cross (const Unit3 &q) const |
| Cross-product between two Unit3s.
|
|
Point3 | cross (const Point3 &q) const |
| Cross-product w Point3.
|
|