gtsam
4.0.0
gtsam
|
Gaussian implements the mathematical model |R*x|^2 = |y|^2 with R'*R=inv(Sigma) where y = whiten(x) = R*x x = unwhiten(x) = inv(R)*y as indeed |y|^2 = y'*y = x'*R'*R*x Various derived classes are available that are more efficient.
The named constructors return a shared_ptr because, when the smart flag is true, the underlying object might be a derived class such as Diagonal.
Public Member Functions | |
virtual void | print (const std::string &name) const |
virtual bool | equals (const Base &expected, double tol=1e-9) const |
virtual Vector | sigmas () const |
Calculate standard deviations. | |
virtual Vector | whiten (const Vector &v) const |
Whiten an error vector. | |
virtual Vector | unwhiten (const Vector &v) const |
Unwhiten an error vector. | |
virtual double | Mahalanobis (const Vector &v) const |
Mahalanobis distance v'*R'*R*v = <R*v,R*v> | |
virtual double | distance (const Vector &v) const |
virtual Matrix | Whiten (const Matrix &H) const |
Multiply a derivative with R (derivative of whiten) Equivalent to whitening each column of the input matrix. | |
virtual void | WhitenInPlace (Matrix &H) const |
In-place version. | |
virtual void | WhitenInPlace (Eigen::Block< Matrix > H) const |
In-place version. | |
virtual void | WhitenSystem (std::vector< Matrix > &A, Vector &b) const |
Whiten a system, in place as well. | |
virtual void | WhitenSystem (Matrix &A, Vector &b) const |
virtual void | WhitenSystem (Matrix &A1, Matrix &A2, Vector &b) const |
virtual void | WhitenSystem (Matrix &A1, Matrix &A2, Matrix &A3, Vector &b) const |
virtual boost::shared_ptr< Diagonal > | QR (Matrix &Ab) const |
Apply appropriately weighted QR factorization to the system [A b] Q' * [A b] = [R d] Dimensions: (r*m) * m*(n+1) = r*(n+1), where r = min(m,n). More... | |
virtual Matrix | R () const |
Return R itself, but note that Whiten(H) is cheaper than R*H. | |
virtual Matrix | information () const |
Compute information matrix. | |
virtual Matrix | covariance () const |
Compute covariance matrix. | |
![]() | |
Base (size_t dim=1) | |
primary constructor More... | |
virtual bool | isConstrained () const |
true if a constrained noise model, saves slow/clumsy dynamic casting | |
virtual bool | isUnit () const |
true if a unit noise model, saves slow/clumsy dynamic casting | |
size_t | dim () const |
Dimensionality. | |
virtual void | whitenInPlace (Vector &v) const |
in-place whiten, override if can be done more efficiently | |
virtual void | unwhitenInPlace (Vector &v) const |
in-place unwhiten, override if can be done more efficiently | |
virtual void | whitenInPlace (Eigen::Block< Vector > &v) const |
in-place whiten, override if can be done more efficiently | |
virtual void | unwhitenInPlace (Eigen::Block< Vector > &v) const |
in-place unwhiten, override if can be done more efficiently | |
Static Public Member Functions | |
static shared_ptr | SqrtInformation (const Matrix &R, bool smart=true) |
A Gaussian noise model created by specifying a square root information matrix. More... | |
static shared_ptr | Information (const Matrix &M, bool smart=true) |
A Gaussian noise model created by specifying an information matrix. More... | |
static shared_ptr | Covariance (const Matrix &covariance, bool smart=true) |
A Gaussian noise model created by specifying a covariance matrix. More... | |
Public Types | |
typedef boost::shared_ptr< Gaussian > | shared_ptr |
![]() | |
typedef boost::shared_ptr< Base > | shared_ptr |
Protected Member Functions | |
Gaussian (size_t dim=1, const boost::optional< Matrix > &sqrt_information=boost::none) | |
protected constructor takes square root information matrix | |
Protected Attributes | |
boost::optional< Matrix > | sqrt_information_ |
Matrix square root of information matrix (R) | |
![]() | |
size_t | dim_ |
Friends | |
class | boost::serialization::access |
Serialization function. | |
|
static |
A Gaussian noise model created by specifying a covariance matrix.
covariance | The square covariance Matrix |
smart | check if can be simplified to derived class |
|
static |
A Gaussian noise model created by specifying an information matrix.
M | The information matrix |
smart | check if can be simplified to derived class |
|
virtual |
Apply appropriately weighted QR factorization to the system [A b] Q' * [A b] = [R d] Dimensions: (r*m) * m*(n+1) = r*(n+1), where r = min(m,n).
This routine performs an in-place factorization on Ab. Below-diagonal elements are set to zero by this routine.
Ab | is the m*(n+1) augmented system matrix [A b] |
Reimplemented in gtsam::noiseModel::Constrained.
|
static |
A Gaussian noise model created by specifying a square root information matrix.
R | The (upper-triangular) square root information matrix |
smart | check if can be simplified to derived class |