|
class | gtsam::noiseModel::Base |
| noiseModel::Base is the abstract base class for all noise models. More...
|
|
class | gtsam::noiseModel::Gaussian |
| Gaussian implements the mathematical model |R*x|^2 = |y|^2 with R'*R=inv(Sigma) where y = whiten(x) = R*x x = unwhiten(x) = inv(R)*y as indeed |y|^2 = y'*y = x'*R'*R*x Various derived classes are available that are more efficient. More...
|
|
class | gtsam::noiseModel::Diagonal |
| A diagonal noise model implements a diagonal covariance matrix, with the elements of the diagonal specified in a Vector. More...
|
|
class | gtsam::noiseModel::Constrained |
| A Constrained constrained model is a specialization of Diagonal which allows some or all of the sigmas to be zero, forcing the error to be zero there. More...
|
|
class | gtsam::noiseModel::Isotropic |
| An isotropic noise model corresponds to a scaled diagonal covariance To construct, use one of the static methods. More...
|
|
class | gtsam::noiseModel::Unit |
| Unit: i.i.d. More...
|
|
class | gtsam::noiseModel::mEstimator::Base |
|
class | gtsam::noiseModel::mEstimator::Null |
| Null class is not robust so is a Gaussian ? More...
|
|
class | gtsam::noiseModel::mEstimator::Fair |
| Fair implements the "Fair" robust error model (Zhang97ivc) More...
|
|
class | gtsam::noiseModel::mEstimator::Huber |
| Huber implements the "Huber" robust error model (Zhang97ivc) More...
|
|
class | gtsam::noiseModel::mEstimator::Cauchy |
| Cauchy implements the "Cauchy" robust error model (Lee2013IROS). More...
|
|
class | gtsam::noiseModel::mEstimator::Tukey |
| Tukey implements the "Tukey" robust error model (Zhang97ivc) More...
|
|
class | gtsam::noiseModel::mEstimator::Welsh |
| Welsh implements the "Welsh" robust error model (Zhang97ivc) More...
|
|
class | gtsam::noiseModel::mEstimator::GemanMcClure |
| GemanMcClure implements the "Geman-McClure" robust error model (Zhang97ivc). More...
|
|
class | gtsam::noiseModel::mEstimator::DCS |
| DCS implements the Dynamic Covariance Scaling robust error model from the paper Robust Map Optimization (Agarwal13icra). More...
|
|
class | gtsam::noiseModel::mEstimator::L2WithDeadZone |
| L2WithDeadZone implements a standard L2 penalty, but with a dead zone of width 2*k, centered at the origin. More...
|
|
class | gtsam::noiseModel::Robust |
| Base class for robust error models The robust M-estimators above simply tell us how to re-weight the residual, and are isotropic kernels, in that they do not allow for correlated noise. More...
|
|
struct | gtsam::traits< noiseModel::Gaussian > |
| traits More...
|
|
struct | gtsam::traits< noiseModel::Diagonal > |
|
struct | gtsam::traits< noiseModel::Constrained > |
|
struct | gtsam::traits< noiseModel::Isotropic > |
|
struct | gtsam::traits< noiseModel::Unit > |
|