gtsam
4.0.0
gtsam
|
Go to the source code of this file.
Classes | |
class | gtsam::noiseModel::Base |
noiseModel::Base is the abstract base class for all noise models. More... | |
class | gtsam::noiseModel::Gaussian |
Gaussian implements the mathematical model |R*x|^2 = |y|^2 with R'*R=inv(Sigma) where y = whiten(x) = R*x x = unwhiten(x) = inv(R)*y as indeed |y|^2 = y'*y = x'*R'*R*x Various derived classes are available that are more efficient. More... | |
class | gtsam::noiseModel::Diagonal |
A diagonal noise model implements a diagonal covariance matrix, with the elements of the diagonal specified in a Vector. More... | |
class | gtsam::noiseModel::Constrained |
A Constrained constrained model is a specialization of Diagonal which allows some or all of the sigmas to be zero, forcing the error to be zero there. More... | |
class | gtsam::noiseModel::Isotropic |
An isotropic noise model corresponds to a scaled diagonal covariance To construct, use one of the static methods. More... | |
class | gtsam::noiseModel::Unit |
Unit: i.i.d. More... | |
class | gtsam::noiseModel::mEstimator::Base |
class | gtsam::noiseModel::mEstimator::Null |
Null class is not robust so is a Gaussian ? More... | |
class | gtsam::noiseModel::mEstimator::Fair |
Fair implements the "Fair" robust error model (Zhang97ivc) More... | |
class | gtsam::noiseModel::mEstimator::Huber |
Huber implements the "Huber" robust error model (Zhang97ivc) More... | |
class | gtsam::noiseModel::mEstimator::Cauchy |
Cauchy implements the "Cauchy" robust error model (Lee2013IROS). More... | |
class | gtsam::noiseModel::mEstimator::Tukey |
Tukey implements the "Tukey" robust error model (Zhang97ivc) More... | |
class | gtsam::noiseModel::mEstimator::Welsh |
Welsh implements the "Welsh" robust error model (Zhang97ivc) More... | |
class | gtsam::noiseModel::mEstimator::GemanMcClure |
GemanMcClure implements the "Geman-McClure" robust error model (Zhang97ivc). More... | |
class | gtsam::noiseModel::mEstimator::DCS |
DCS implements the Dynamic Covariance Scaling robust error model from the paper Robust Map Optimization (Agarwal13icra). More... | |
class | gtsam::noiseModel::mEstimator::L2WithDeadZone |
L2WithDeadZone implements a standard L2 penalty, but with a dead zone of width 2*k, centered at the origin. More... | |
class | gtsam::noiseModel::Robust |
Base class for robust error models The robust M-estimators above simply tell us how to re-weight the residual, and are isotropic kernels, in that they do not allow for correlated noise. More... | |
struct | gtsam::traits< noiseModel::Gaussian > |
traits More... | |
struct | gtsam::traits< noiseModel::Diagonal > |
struct | gtsam::traits< noiseModel::Constrained > |
struct | gtsam::traits< noiseModel::Isotropic > |
struct | gtsam::traits< noiseModel::Unit > |
Namespaces | |
gtsam | |
Global functions in a separate testing namespace. | |
gtsam::noiseModel | |
All noise models live in the noiseModel namespace. | |
gtsam::noiseModel::mEstimator | |
The mEstimator name space contains all robust error functions. | |
Typedefs | |
typedef noiseModel::Base::shared_ptr | gtsam::SharedNoiseModel |
Note, deliberately not in noiseModel namespace. More... | |
typedef noiseModel::Gaussian::shared_ptr | gtsam::SharedGaussian |
typedef noiseModel::Diagonal::shared_ptr | gtsam::SharedDiagonal |
typedef noiseModel::Constrained::shared_ptr | gtsam::SharedConstrained |
typedef noiseModel::Isotropic::shared_ptr | gtsam::SharedIsotropic |
Functions | |
boost::optional< Vector > | gtsam::noiseModel::checkIfDiagonal (const Matrix M) |