gtsam
4.0.0
gtsam
|
Base class for robust error models The robust M-estimators above simply tell us how to re-weight the residual, and are isotropic kernels, in that they do not allow for correlated noise.
They also have no way to scale the residual values, e.g., dividing by a single standard deviation. Hence, the actual robust noise model below does this scaling/whitening in sequence, by passing both a standard noise model and a robust estimator.
Taking as an example noise = Isotropic::Create(d, sigma), we first divide the residuals uw = |Ax-b| by sigma by "whitening" the system (A,b), obtaining r = |Ax-b|/sigma, and then we pass the now whitened residual 'r' through the robust M-estimator. This is currently done by multiplying with sqrt(w), because the residuals will be squared again in error, yielding 0.5 \sum w(r)*r^2.
In other words, while sigma is expressed in the native residual units, a parameter like k in the Huber norm is expressed in whitened units, i.e., "nr of sigmas".
Public Member Functions | |
Robust () | |
Default Constructor for serialization. | |
Robust (const RobustModel::shared_ptr robust, const NoiseModel::shared_ptr noise) | |
Constructor. | |
virtual | ~Robust () |
Destructor. | |
virtual void | print (const std::string &name) const |
virtual bool | equals (const Base &expected, double tol=1e-9) const |
const RobustModel::shared_ptr & | robust () const |
Return the contained robust error function. | |
const NoiseModel::shared_ptr & | noise () const |
Return the contained noise model. | |
virtual Vector | whiten (const Vector &v) const |
Whiten an error vector. | |
virtual Matrix | Whiten (const Matrix &A) const |
Whiten a matrix. | |
virtual Vector | unwhiten (const Vector &) const |
Unwhiten an error vector. | |
virtual double | distance (const Vector &v) const |
virtual double | distance_non_whitened (const Vector &v) const |
virtual void | WhitenSystem (Vector &b) const |
virtual void | WhitenSystem (std::vector< Matrix > &A, Vector &b) const |
virtual void | WhitenSystem (Matrix &A, Vector &b) const |
virtual void | WhitenSystem (Matrix &A1, Matrix &A2, Vector &b) const |
virtual void | WhitenSystem (Matrix &A1, Matrix &A2, Matrix &A3, Vector &b) const |
![]() | |
Base (size_t dim=1) | |
primary constructor More... | |
virtual bool | isConstrained () const |
true if a constrained noise model, saves slow/clumsy dynamic casting | |
virtual bool | isUnit () const |
true if a unit noise model, saves slow/clumsy dynamic casting | |
size_t | dim () const |
Dimensionality. | |
virtual Vector | sigmas () const |
Calculate standard deviations. | |
virtual void | whitenInPlace (Vector &v) const |
in-place whiten, override if can be done more efficiently | |
virtual void | unwhitenInPlace (Vector &v) const |
in-place unwhiten, override if can be done more efficiently | |
virtual void | whitenInPlace (Eigen::Block< Vector > &v) const |
in-place whiten, override if can be done more efficiently | |
virtual void | unwhitenInPlace (Eigen::Block< Vector > &v) const |
in-place unwhiten, override if can be done more efficiently | |
Static Public Member Functions | |
static shared_ptr | Create (const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise) |
Public Types | |
typedef boost::shared_ptr< Robust > | shared_ptr |
![]() | |
typedef boost::shared_ptr< Base > | shared_ptr |
Protected Types | |
typedef mEstimator::Base | RobustModel |
typedef noiseModel::Base | NoiseModel |
Protected Attributes | |
const RobustModel::shared_ptr | robust_ |
robust error function used | |
const NoiseModel::shared_ptr | noise_ |
noise model used | |
![]() | |
size_t | dim_ |
Friends | |
class | boost::serialization::access |
Serialization function. | |