30 #include <boost/optional.hpp> 89 template<
class POSE,
class VELOCITY>
97 Vector delta_pos_in_t0_;
98 Vector delta_vel_in_t0_;
99 Vector3 delta_angles_;
104 Vector world_omega_earth_;
106 Matrix Jacobian_wrt_t0_Overall_;
108 boost::optional<POSE> body_P_sensor_;
113 typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel_NoBias> shared_ptr;
120 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0,
const Vector3& delta_angles,
121 double dt12,
const Vector world_g,
const Vector world_rho,
122 const Vector& world_omega_earth,
const noiseModel::Gaussian::shared_ptr& model_equivalent,
123 const Matrix& Jacobian_wrt_t0_Overall,
124 boost::optional<POSE> body_P_sensor = boost::none) :
125 Base(model_equivalent, Pose1, Vel1,
Pose2, Vel2),
126 delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
127 dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall),
128 body_P_sensor_(body_P_sensor) { }
135 virtual void print(
const std::string& s =
"EquivInertialNavFactor_GlobalVel_NoBias",
const KeyFormatter& keyFormatter = DefaultKeyFormatter)
const {
136 std::cout << s <<
"(" 137 << keyFormatter(this->
key1()) <<
"," 138 << keyFormatter(this->key2()) <<
"," 139 << keyFormatter(this->key3()) <<
"," 140 << keyFormatter(this->key4()) <<
"\n";
141 std::cout <<
"delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
142 std::cout <<
"delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
143 std::cout <<
"delta_angles: " << this->delta_angles_ << std::endl;
144 std::cout <<
"dt12: " << this->dt12_ << std::endl;
145 std::cout <<
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
146 std::cout <<
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
147 std::cout <<
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
148 if(this->body_P_sensor_)
149 this->body_P_sensor_->print(
" sensor pose in body frame: ");
150 this->noiseModel_->print(
" noise model");
155 const This *e = dynamic_cast<const This*> (&expected);
157 && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
158 && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
159 && (delta_angles_ - e->delta_angles_).norm() < tol
160 && (dt12_ - e->dt12_) < tol
161 && (world_g_ - e->world_g_).norm() < tol
162 && (world_rho_ - e->world_rho_).norm() < tol
163 && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
164 && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->
equals(*e->body_P_sensor_)));
168 POSE predictPose(
const POSE& Pose1,
const VELOCITY& Vel1)
const {
171 Vector delta_pos_in_t0_corrected = delta_pos_in_t0_;
174 Vector delta_angles_corrected = delta_angles_;
176 return predictPose_inertial(Pose1, Vel1,
177 delta_pos_in_t0_corrected, delta_angles_corrected,
178 dt12_, world_g_, world_rho_, world_omega_earth_);
181 static inline POSE predictPose_inertial(
const POSE& Pose1,
const VELOCITY& Vel1,
182 const Vector& delta_pos_in_t0,
const Vector3& delta_angles,
183 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth){
185 const POSE& world_P1_body = Pose1;
186 const VELOCITY& world_V1_body = Vel1;
189 Vector body_deltaPos_body = delta_pos_in_t0;
191 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
192 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
195 world_deltaPos_body -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
205 Vector body_deltaAngles_body = delta_angles;
208 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
209 Vector body_rho = body_R_world * world_rho;
210 Vector body_omega_earth = body_R_world * world_omega_earth;
213 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
215 return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() +
typename POSE::Translation(world_deltaPos_body));
219 VELOCITY predictVelocity(
const POSE& Pose1,
const VELOCITY& Vel1)
const {
222 Vector delta_vel_in_t0_corrected = delta_vel_in_t0_;
224 return predictVelocity_inertial(Pose1, Vel1,
225 delta_vel_in_t0_corrected,
226 dt12_, world_g_, world_rho_, world_omega_earth_);
229 static inline VELOCITY predictVelocity_inertial(
const POSE& Pose1,
const VELOCITY& Vel1,
230 const Vector& delta_vel_in_t0,
231 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth) {
233 const POSE& world_P1_body = Pose1;
234 const VELOCITY& world_V1_body = Vel1;
236 Vector body_deltaVel_body = delta_vel_in_t0;
237 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
239 VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
242 VelDelta -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
245 return Vel1.compose( VelDelta );
249 void predict(
const POSE& Pose1,
const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2)
const {
250 Pose2 = predictPose(Pose1, Vel1);
251 Vel2 = predictVelocity(Pose1, Vel1);
254 POSE evaluatePoseError(
const POSE& Pose1,
const VELOCITY& Vel1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
256 POSE Pose2Pred = predictPose(Pose1, Vel1);
259 return Pose2.between(Pose2Pred);
262 VELOCITY evaluateVelocityError(
const POSE& Pose1,
const VELOCITY& Vel1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
264 VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1);
267 return Vel2.between(Vel2Pred);
270 Vector
evaluateError(
const POSE& Pose1,
const VELOCITY& Vel1,
const POSE&
Pose2,
const VELOCITY& Vel2,
271 boost::optional<Matrix&> H1 = boost::none,
272 boost::optional<Matrix&> H2 = boost::none,
273 boost::optional<Matrix&> H3 = boost::none,
274 boost::optional<Matrix&> H4 = boost::none)
const {
279 Matrix H1_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError,
this, _1, Vel1,
Pose2, Vel2), Pose1);
280 Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError,
this, _1, Vel1,
Pose2, Vel2), Pose1);
281 *H1 =
stack(2, &H1_Pose, &H1_Vel);
286 Matrix H2_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError,
this, Pose1, _1,
Pose2, Vel2), Vel1);
287 Matrix H2_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError,
this, Pose1, _1,
Pose2, Vel2), Vel1);
288 *H2 =
stack(2, &H2_Pose, &H2_Vel);
293 Matrix H3_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError,
this, Pose1, Vel1, _1, Vel2),
Pose2);
294 Matrix H3_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError,
this, Pose1, Vel1, _1, Vel2),
Pose2);
295 *H3 =
stack(2, &H3_Pose, &H3_Vel);
300 Matrix H4_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError,
this, Pose1, Vel1,
Pose2, _1), Vel2);
301 Matrix H4_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError,
this, Pose1, Vel1,
Pose2, _1), Vel2);
302 *H4 =
stack(2, &H4_Pose, &H4_Vel);
305 Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1,
Pose2, Vel2)));
306 Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1,
Pose2, Vel2)));
313 static inline POSE PredictPoseFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1,
314 const Vector& delta_pos_in_t0,
const Vector3& delta_angles,
315 double dt12,
const Vector world_g,
const Vector world_rho,
316 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
319 Vector delta_pos_in_t0_corrected = delta_pos_in_t0;
322 Vector delta_angles_corrected = delta_angles;
326 return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
329 static inline VELOCITY PredictVelocityFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1,
330 const Vector& delta_vel_in_t0,
double dt12,
const Vector world_g,
const Vector world_rho,
331 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
333 Vector delta_vel_in_t0_corrected = delta_vel_in_t0;
335 return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
338 static inline void PredictFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2,
339 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0,
const Vector3& delta_angles,
340 double dt12,
const Vector world_g,
const Vector world_rho,
341 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
343 Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
344 Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
348 static inline void PreIntegrateIMUObservations(
const Vector& msr_acc_t,
const Vector& msr_gyro_t,
const double msr_dt,
349 Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0,
double& delta_t,
350 const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
351 Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall,
352 boost::optional<POSE> p_body_P_sensor = boost::none){
356 POSE body_P_sensor = POSE();
357 bool flag_use_body_P_sensor =
false;
358 if (p_body_P_sensor){
359 body_P_sensor = *p_body_P_sensor;
360 flag_use_body_P_sensor =
true;
363 delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
364 delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor);
365 delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor);
370 Matrix Z_3x3 = Z_3x3;
371 Matrix I_3x3 = I_3x3;
373 Matrix H_pos_pos = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0);
374 Matrix H_pos_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0);
375 Matrix H_pos_angles = Z_3x3;
377 Matrix H_vel_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor), delta_vel_in_t0);
378 Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor), delta_angles);
379 Matrix H_vel_pos = Z_3x3;
381 Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor), delta_angles);
382 Matrix H_angles_pos = Z_3x3;
383 Matrix H_angles_vel = Z_3x3;
385 Matrix F_angles =
collect(3, &H_angles_angles, &H_angles_pos, &H_angles_vel);
386 Matrix F_pos =
collect(3, &H_pos_angles, &H_pos_pos, &H_pos_vel);
387 Matrix F_vel =
collect(3, &H_vel_angles, &H_vel_pos, &H_vel_vel);
388 Matrix F =
stack(3, &F_angles, &F_pos, &F_vel);
390 noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
391 Matrix Q_d =
inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() );
393 EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
396 Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
399 static inline Vector PreIntegrateIMUObservations_delta_pos(
const double msr_dt,
400 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0){
405 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
410 static inline Vector PreIntegrateIMUObservations_delta_vel(
const Vector& msr_gyro_t,
const Vector& msr_acc_t,
const double msr_dt,
411 const Vector3& delta_angles,
const Vector& delta_vel_in_t0,
const bool flag_use_body_P_sensor,
const POSE& body_P_sensor){
416 Vector AccCorrected = msr_acc_t;
417 Vector body_t_a_body;
418 if (flag_use_body_P_sensor){
419 Matrix body_R_sensor = body_P_sensor.rotation().matrix();
421 Vector GyroCorrected(msr_gyro_t);
423 Vector body_omega_body = body_R_sensor * GyroCorrected;
424 Matrix body_omega_body__cross =
skewSymmetric(body_omega_body);
426 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
428 body_t_a_body = AccCorrected;
433 return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
437 static inline Vector PreIntegrateIMUObservations_delta_angles(
const Vector& msr_gyro_t,
const double msr_dt,
438 const Vector3& delta_angles,
const bool flag_use_body_P_sensor,
const POSE& body_P_sensor){
443 Vector GyroCorrected = msr_gyro_t;
445 Vector body_t_omega_body;
446 if (flag_use_body_P_sensor){
447 body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
449 body_t_omega_body = GyroCorrected;
454 R_t_to_t0 = R_t_to_t0 *
Rot3::Expmap( body_t_omega_body*msr_dt );
458 static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(
const noiseModel::Gaussian::shared_ptr& gaussian_acc,
const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
459 const noiseModel::Gaussian::shared_ptr& gaussian_process){
461 Matrix cov_acc =
inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
462 Matrix cov_gyro =
inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
463 Matrix cov_process =
inverse( gaussian_process->R().transpose() * gaussian_process->R() );
465 cov_process.block(0,0, 3,3) += cov_gyro;
466 cov_process.block(6,6, 3,3) += cov_acc;
471 static inline void CalcEquivalentNoiseCov_DifferentParts(
const noiseModel::Gaussian::shared_ptr& gaussian_acc,
const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
472 const noiseModel::Gaussian::shared_ptr& gaussian_process,
473 Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
475 cov_acc =
inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
476 cov_gyro =
inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
477 cov_process_without_acc_gyro =
inverse( gaussian_process->R().transpose() * gaussian_process->R() );
480 static inline void Calc_g_rho_omega_earth_NED(
const Vector& Pos_NED,
const Vector& Vel_NED,
const Vector& LatLonHeight_IC,
const Vector& Pos_NED_Initial,
481 Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
483 Matrix ENU_to_NED = (Matrix(3, 3) <<
486 0.0, 0.0, -1.0).finished();
488 Matrix NED_to_ENU = (Matrix(3, 3) <<
491 0.0, 0.0, -1.0).finished();
494 Vector Pos_ENU = NED_to_ENU * Pos_NED;
495 Vector Vel_ENU = NED_to_ENU * Vel_NED;
496 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
501 Vector omega_earth_ENU;
502 Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
505 g_NED = ENU_to_NED * g_ENU;
506 rho_NED = ENU_to_NED * rho_ENU;
507 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
510 static inline void Calc_g_rho_omega_earth_ENU(
const Vector& Pos_ENU,
const Vector& Vel_ENU,
const Vector& LatLonHeight_IC,
const Vector& Pos_ENU_Initial,
511 Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
512 double R0 = 6.378388e6;
514 double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
517 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
518 double delta_lat(delta_Pos_ENU(1)/Re);
519 double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
520 double lat_new(LatLonHeight_IC(0) + delta_lat);
521 double lon_new(LatLonHeight_IC(1) + delta_lon);
524 Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
525 -sin(lon_new), cos(lon_new), 0.0,
529 Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
531 -sin(lat_new), 0.0, cos(lat_new));
533 Rot3 UEN_to_ENU(0, 1, 0,
537 Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
539 Vector omega_earth_ECEF((Vector(3) << 0.0, 0.0, 7.292115e-5));
540 omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
543 double height(LatLonHeight_IC(2));
544 double EQUA_RADIUS = 6378137.0;
545 double ECCENTRICITY = 0.0818191908426;
546 double e2( pow(ECCENTRICITY,2) );
547 double den( 1-e2*pow(sin(lat_new),2) );
548 double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
549 double Rp( EQUA_RADIUS/( sqrt(den) ) );
550 double Ro( sqrt(Rp*Rm) );
551 double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
552 double g_calc( g0/( pow(1 + height/Ro, 2) ) );
553 g_ENU = (Vector(3) << 0.0, 0.0, -g_calc);
557 double Ve( Vel_ENU(0) );
558 double Vn( Vel_ENU(1) );
559 double rho_E = -Vn/(Rm + height);
560 double rho_N = Ve/(Rp + height);
561 double rho_U = Ve*tan(lat_new)/(Rp + height);
562 rho_ENU = (Vector(3) << rho_E, rho_N, rho_U);
565 static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(
const noiseModel::Gaussian::shared_ptr& model,
double delta_t){
576 template<
class ARCHIVE>
577 void serialize(ARCHIVE & ar,
const unsigned int ) {
578 ar & boost::serialization::make_nvp(
"NonlinearFactor2",
579 boost::serialization::base_object<Base>(*
this));
Matrix3 skewSymmetric(double wx, double wy, double wz)
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0
Definition: Matrix.h:403
This is the base class for all factor types.
Definition: Factor.h:54
virtual bool equals(const NonlinearFactor &expected, double tol=1e-9) const
equals
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:154
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:57
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H=boost::none)
Log map at identity - returns the canonical coordinates of this rotation.
Definition: Rot3M.cpp:129
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
A Gaussian noise model created by specifying a square root information matrix.
Definition: NoiseModel.cpp:81
A convenient base class for creating your own NoiseModelFactor with 4 variables.
Definition: NonlinearFactor.h:497
boost::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:33
T inverse(const T &t)
unary functions
Definition: lieProxies.h:43
Nonlinear factor base class.
Definition: NonlinearFactor.h:50
EquivInertialNavFactor_GlobalVel_NoBias(const Key &Pose1, const Key &Vel1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, boost::optional< POSE > body_P_sensor=boost::none)
Constructor.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:119
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:90
Non-linear factor base classes.
friend class boost::serialization::access
Serialization function.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:575
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const POSE &Pose2, const VELOCITY &Vel2, boost::optional< Matrix & > H1=boost::none, boost::optional< Matrix & > H2=boost::none, boost::optional< Matrix & > H3=boost::none, boost::optional< Matrix & > H4=boost::none) const
Override this method to finish implementing a 4-way factor.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:270
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H=boost::none)
Exponential map at identity - create a rotation from canonical coordinates using Rodrigues' formula.
Definition: Rot3.h:316
3D rotation represented as a rotation matrix or quaternion
Vector concatVectors(const std::list< Vector > &vs)
concatenate Vectors
Definition: Vector.cpp:264
Matrix collect(const std::vector< const Matrix * > &matrices, size_t m, size_t n)
create a matrix by concatenating Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:438
Matrix stack(size_t nrMatrices,...)
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:392
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
typedef and functions to augment Eigen's MatrixXd
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
A Gaussian noise model created by specifying a covariance matrix.
Definition: NoiseModel.cpp:112
Some functions to compute numerical derivatives.
virtual bool equals(const NonlinearFactor &f, double tol=1e-9) const
Check if two factors are equal.
Definition: NonlinearFactor.cpp:71
EquivInertialNavFactor_GlobalVel_NoBias()
default constructor - only use for serialization
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:116
Key key1() const
methods to retrieve keys
Definition: NonlinearFactor.h:533
virtual void print(const std::string &s="EquivInertialNavFactor_GlobalVel_NoBias", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
implement functions needed for Testable
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:135
bool equals(const This &other, double tol=1e-9) const
check equality
Definition: Factor.cpp:42