30 #include <boost/optional.hpp> 89 template<
class POSE,
class VELOCITY,
class IMUBIAS>
97 Vector delta_pos_in_t0_;
98 Vector delta_vel_in_t0_;
99 Vector3 delta_angles_;
104 Vector world_omega_earth_;
106 Matrix Jacobian_wrt_t0_Overall_;
108 boost::optional<IMUBIAS> Bias_initial_;
109 boost::optional<POSE> body_P_sensor_;
114 typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel> shared_ptr;
121 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0,
const Vector3& delta_angles,
122 double dt12,
const Vector world_g,
const Vector world_rho,
123 const Vector& world_omega_earth,
const noiseModel::Gaussian::shared_ptr& model_equivalent,
124 const Matrix& Jacobian_wrt_t0_Overall,
125 boost::optional<IMUBIAS> Bias_initial = boost::none, boost::optional<POSE> body_P_sensor = boost::none) :
126 Base(model_equivalent, Pose1, Vel1, IMUBias1,
Pose2, Vel2),
127 delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
128 dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall),
129 Bias_initial_(Bias_initial), body_P_sensor_(body_P_sensor) { }
136 virtual void print(
const std::string& s =
"EquivInertialNavFactor_GlobalVel",
const KeyFormatter& keyFormatter = DefaultKeyFormatter)
const {
137 std::cout << s <<
"(" 138 << keyFormatter(this->
key1()) <<
"," 139 << keyFormatter(this->key2()) <<
"," 140 << keyFormatter(this->key3()) <<
"," 141 << keyFormatter(this->key4()) <<
"," 142 << keyFormatter(this->key5()) <<
"\n";
143 std::cout <<
"delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
144 std::cout <<
"delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
145 std::cout <<
"delta_angles: " << this->delta_angles_ << std::endl;
146 std::cout <<
"dt12: " << this->dt12_ << std::endl;
147 std::cout <<
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
148 std::cout <<
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
149 std::cout <<
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
150 if(this->body_P_sensor_)
151 this->body_P_sensor_->print(
" sensor pose in body frame: ");
152 this->noiseModel_->print(
" noise model");
157 const This *e = dynamic_cast<const This*> (&expected);
159 && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
160 && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
161 && (delta_angles_ - e->delta_angles_).norm() < tol
162 && (dt12_ - e->dt12_) < tol
163 && (world_g_ - e->world_g_).norm() < tol
164 && (world_rho_ - e->world_rho_).norm() < tol
165 && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
166 && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->
equals(*e->body_P_sensor_)));
170 POSE predictPose(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1)
const {
173 Vector delta_BiasAcc = Bias1.accelerometer();
174 Vector delta_BiasGyro = Bias1.gyroscope();
176 delta_BiasAcc -= Bias_initial_->accelerometer();
177 delta_BiasGyro -= Bias_initial_->gyroscope();
180 Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(4,9,3,3);
181 Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(4,12,3,3);
182 Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(0,12,3,3);
185 Vector delta_pos_in_t0_corrected = delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
188 Vector delta_angles_corrected = delta_angles_ + J_angles_wrt_BiasGyro*delta_BiasGyro;
192 return predictPose_inertial(Pose1, Vel1,
193 delta_pos_in_t0_corrected, delta_angles_corrected,
194 dt12_, world_g_, world_rho_, world_omega_earth_);
197 static inline POSE predictPose_inertial(
const POSE& Pose1,
const VELOCITY& Vel1,
198 const Vector& delta_pos_in_t0,
const Vector3& delta_angles,
199 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth){
201 const POSE& world_P1_body = Pose1;
202 const VELOCITY& world_V1_body = Vel1;
205 Vector body_deltaPos_body = delta_pos_in_t0;
207 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
208 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
211 world_deltaPos_body -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
221 Vector body_deltaAngles_body = delta_angles;
224 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
225 Vector body_rho = body_R_world * world_rho;
226 Vector body_omega_earth = body_R_world * world_omega_earth;
229 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
231 return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() +
typename POSE::Translation(world_deltaPos_body));
235 VELOCITY predictVelocity(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1)
const {
238 Vector delta_BiasAcc = Bias1.accelerometer();
239 Vector delta_BiasGyro = Bias1.gyroscope();
241 delta_BiasAcc -= Bias_initial_->accelerometer();
242 delta_BiasGyro -= Bias_initial_->gyroscope();
245 Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(6,9,3,3);
246 Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(6,12,3,3);
248 Vector delta_vel_in_t0_corrected = delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
250 return predictVelocity_inertial(Pose1, Vel1,
251 delta_vel_in_t0_corrected,
252 dt12_, world_g_, world_rho_, world_omega_earth_);
255 static inline VELOCITY predictVelocity_inertial(
const POSE& Pose1,
const VELOCITY& Vel1,
256 const Vector& delta_vel_in_t0,
257 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth) {
259 const POSE& world_P1_body = Pose1;
260 const VELOCITY& world_V1_body = Vel1;
262 Vector body_deltaVel_body = delta_vel_in_t0;
263 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
265 VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
268 VelDelta -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
271 return Vel1 + VelDelta;
275 void predict(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2)
const {
276 Pose2 = predictPose(Pose1, Vel1, Bias1);
277 Vel2 = predictVelocity(Pose1, Vel1, Bias1);
280 POSE evaluatePoseError(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
282 POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
285 POSE DiffPose( Pose2.rotation().between(Pose2Pred.rotation()), Pose2Pred.translation() - Pose2.translation() );
292 VELOCITY evaluateVelocityError(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
294 VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
297 return Vel2Pred-Vel2;
300 Vector
evaluateError(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
const POSE&
Pose2,
const VELOCITY& Vel2,
301 boost::optional<Matrix&> H1 = boost::none,
302 boost::optional<Matrix&> H2 = boost::none,
303 boost::optional<Matrix&> H3 = boost::none,
304 boost::optional<Matrix&> H4 = boost::none,
305 boost::optional<Matrix&> H5 = boost::none)
const {
310 Matrix H1_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
this, _1, Vel1, Bias1,
Pose2, Vel2), Pose1);
311 Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
this, _1, Vel1, Bias1,
Pose2, Vel2), Pose1);
312 *H1 =
stack(2, &H1_Pose, &H1_Vel);
317 if (Vel1.size()!=3)
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
318 Matrix H2_Pose = numericalDerivative11<POSE, Vector3>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
this, Pose1, _1, Bias1,
Pose2, Vel2), Vel1);
319 Matrix H2_Vel = numericalDerivative11<Vector3, Vector3>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
this, Pose1, _1, Bias1,
Pose2, Vel2), Vel1);
320 *H2 =
stack(2, &H2_Pose, &H2_Vel);
325 Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
this, Pose1, Vel1, _1,
Pose2, Vel2), Bias1);
326 Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
this, Pose1, Vel1, _1,
Pose2, Vel2), Bias1);
327 *H3 =
stack(2, &H3_Pose, &H3_Vel);
332 Matrix H4_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
this, Pose1, Vel1, Bias1, _1, Vel2),
Pose2);
333 Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
this, Pose1, Vel1, Bias1, _1, Vel2),
Pose2);
334 *H4 =
stack(2, &H4_Pose, &H4_Vel);
339 if (Vel2.size()!=3)
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
340 Matrix H5_Pose = numericalDerivative11<POSE, Vector3>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
this, Pose1, Vel1, Bias1,
Pose2, _1), Vel2);
341 Matrix H5_Vel = numericalDerivative11<Vector3, Vector3>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
this, Pose1, Vel1, Bias1,
Pose2, _1), Vel2);
342 *H5 =
stack(2, &H5_Pose, &H5_Vel);
345 Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1,
Pose2, Vel2)));
346 Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1,
Pose2, Vel2));
353 static inline POSE PredictPoseFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
354 const Vector& delta_pos_in_t0,
const Vector3& delta_angles,
355 double dt12,
const Vector world_g,
const Vector world_rho,
356 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall,
357 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
361 Vector delta_BiasAcc = Bias1.accelerometer();
362 Vector delta_BiasGyro = Bias1.gyroscope();
364 delta_BiasAcc -= Bias_initial->accelerometer();
365 delta_BiasGyro -= Bias_initial->gyroscope();
368 Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(4,9,3,3);
369 Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3);
370 Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3);
373 Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
376 Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro;
380 return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
383 static inline VELOCITY PredictVelocityFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
384 const Vector& delta_vel_in_t0,
double dt12,
const Vector world_g,
const Vector world_rho,
385 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall,
386 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
389 Vector delta_BiasAcc = Bias1.accelerometer();
390 Vector delta_BiasGyro = Bias1.gyroscope();
392 delta_BiasAcc -= Bias_initial->accelerometer();
393 delta_BiasGyro -= Bias_initial->gyroscope();
396 Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(6,9,3,3);
397 Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3);
399 Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
401 return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
404 static inline void PredictFromPreIntegration(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2,
405 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0,
const Vector3& delta_angles,
406 double dt12,
const Vector world_g,
const Vector world_rho,
407 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall,
408 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
410 Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
411 Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, Bias1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
415 static inline void PreIntegrateIMUObservations(
const Vector& msr_acc_t,
const Vector& msr_gyro_t,
const double msr_dt,
416 Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0,
double& delta_t,
417 const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
418 Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall,
const IMUBIAS Bias_t0 = IMUBIAS(),
419 boost::optional<POSE> p_body_P_sensor = boost::none){
423 POSE body_P_sensor = POSE();
424 bool flag_use_body_P_sensor =
false;
425 if (p_body_P_sensor){
426 body_P_sensor = *p_body_P_sensor;
427 flag_use_body_P_sensor =
true;
430 delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
431 delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
432 delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
437 Matrix Z_3x3 = Z_3x3;
438 Matrix I_3x3 = I_3x3;
440 Matrix H_pos_pos = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0);
441 Matrix H_pos_vel = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0);
442 Matrix H_pos_angles = Z_3x3;
443 Matrix H_pos_bias =
collect(2, &Z_3x3, &Z_3x3);
445 Matrix H_vel_vel = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_vel_in_t0);
446 Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles);
447 Matrix H_vel_bias = numericalDerivative11<Vector3, IMUBIAS>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0);
448 Matrix H_vel_pos = Z_3x3;
450 Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles);
451 Matrix H_angles_bias = numericalDerivative11<Vector3, IMUBIAS>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0);
452 Matrix H_angles_pos = Z_3x3;
453 Matrix H_angles_vel = Z_3x3;
455 Matrix F_angles =
collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias);
456 Matrix F_pos =
collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias);
457 Matrix F_vel =
collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias);
458 Matrix F_bias_a =
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3);
459 Matrix F_bias_g =
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3);
460 Matrix F =
stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g);
463 noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
464 Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).
inverse();
466 EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
471 Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
474 static inline Vector PreIntegrateIMUObservations_delta_pos(
const double msr_dt,
475 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0){
480 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
485 static inline Vector PreIntegrateIMUObservations_delta_vel(
const Vector& msr_gyro_t,
const Vector& msr_acc_t,
const double msr_dt,
486 const Vector3& delta_angles,
const Vector& delta_vel_in_t0,
const bool flag_use_body_P_sensor,
const POSE& body_P_sensor,
487 IMUBIAS Bias_t0 = IMUBIAS()){
492 Vector AccCorrected = Bias_t0.correctAccelerometer(msr_acc_t);
493 Vector body_t_a_body;
494 if (flag_use_body_P_sensor){
495 Matrix body_R_sensor = body_P_sensor.rotation().matrix();
497 Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t));
499 Vector body_omega_body = body_R_sensor * GyroCorrected;
500 Matrix body_omega_body__cross =
skewSymmetric(body_omega_body);
502 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
504 body_t_a_body = AccCorrected;
509 return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
513 static inline Vector PreIntegrateIMUObservations_delta_angles(
const Vector& msr_gyro_t,
const double msr_dt,
514 const Vector3& delta_angles,
const bool flag_use_body_P_sensor,
const POSE& body_P_sensor,
515 IMUBIAS Bias_t0 = IMUBIAS()){
520 Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t);
522 Vector body_t_omega_body;
523 if (flag_use_body_P_sensor){
524 body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
526 body_t_omega_body = GyroCorrected;
531 R_t_to_t0 = R_t_to_t0 *
Rot3::Expmap( body_t_omega_body*msr_dt );
536 static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(
const noiseModel::Gaussian::shared_ptr& gaussian_acc,
const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
537 const noiseModel::Gaussian::shared_ptr& gaussian_process){
539 Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
540 Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
541 Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
543 cov_process.block(0,0, 3,3) += cov_gyro;
544 cov_process.block(6,6, 3,3) += cov_acc;
549 static inline void CalcEquivalentNoiseCov_DifferentParts(
const noiseModel::Gaussian::shared_ptr& gaussian_acc,
const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
550 const noiseModel::Gaussian::shared_ptr& gaussian_process,
551 Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
553 cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
554 cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
555 cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
558 static inline void Calc_g_rho_omega_earth_NED(
const Vector& Pos_NED,
const Vector& Vel_NED,
const Vector& LatLonHeight_IC,
const Vector& Pos_NED_Initial,
559 Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
561 Matrix ENU_to_NED = (Matrix(3, 3) <<
564 0.0, 0.0, -1.0).finished();
566 Matrix NED_to_ENU = (Matrix(3, 3) <<
569 0.0, 0.0, -1.0).finished();
572 Vector Pos_ENU = NED_to_ENU * Pos_NED;
573 Vector Vel_ENU = NED_to_ENU * Vel_NED;
574 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
579 Vector omega_earth_ENU;
580 Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
583 g_NED = ENU_to_NED * g_ENU;
584 rho_NED = ENU_to_NED * rho_ENU;
585 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
588 static inline void Calc_g_rho_omega_earth_ENU(
const Vector& Pos_ENU,
const Vector& Vel_ENU,
const Vector& LatLonHeight_IC,
const Vector& Pos_ENU_Initial,
589 Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
590 double R0 = 6.378388e6;
592 double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
595 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
596 double delta_lat(delta_Pos_ENU(1)/Re);
597 double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
598 double lat_new(LatLonHeight_IC(0) + delta_lat);
599 double lon_new(LatLonHeight_IC(1) + delta_lon);
602 Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
603 -sin(lon_new), cos(lon_new), 0.0,
607 Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
609 -sin(lat_new), 0.0, cos(lat_new));
611 Rot3 UEN_to_ENU(0, 1, 0,
615 Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
617 Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5));
618 omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
621 double height(LatLonHeight_IC(2));
622 double EQUA_RADIUS = 6378137.0;
623 double ECCENTRICITY = 0.0818191908426;
624 double e2( pow(ECCENTRICITY,2) );
625 double den( 1-e2*pow(sin(lat_new),2) );
626 double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
627 double Rp( EQUA_RADIUS/( sqrt(den) ) );
628 double Ro( sqrt(Rp*Rm) );
629 double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
630 double g_calc( g0/( pow(1 + height/Ro, 2) ) );
631 g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished();
635 double Ve( Vel_ENU(0) );
636 double Vn( Vel_ENU(1) );
637 double rho_E = -Vn/(Rm + height);
638 double rho_N = Ve/(Rp + height);
639 double rho_U = Ve*tan(lat_new)/(Rp + height);
640 rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished();
643 static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(
const noiseModel::Gaussian::shared_ptr& model,
double delta_t){
654 template<
class ARCHIVE>
655 void serialize(ARCHIVE & ar,
const unsigned int ) {
656 ar & boost::serialization::make_nvp(
"NonlinearFactor2",
657 boost::serialization::base_object<Base>(*
this));
Matrix3 skewSymmetric(double wx, double wy, double wz)
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0
Definition: Matrix.h:403
This is the base class for all factor types.
Definition: Factor.h:54
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const POSE &Pose2, const VELOCITY &Vel2, boost::optional< Matrix & > H1=boost::none, boost::optional< Matrix & > H2=boost::none, boost::optional< Matrix & > H3=boost::none, boost::optional< Matrix & > H4=boost::none, boost::optional< Matrix & > H5=boost::none) const
Override this method to finish implementing a 5-way factor.
Definition: EquivInertialNavFactor_GlobalVel.h:300
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:57
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H=boost::none)
Log map at identity - returns the canonical coordinates of this rotation.
Definition: Rot3M.cpp:129
virtual bool equals(const NonlinearFactor &expected, double tol=1e-9) const
equals
Definition: EquivInertialNavFactor_GlobalVel.h:156
Definition: EquivInertialNavFactor_GlobalVel.h:90
virtual void print(const std::string &s="EquivInertialNavFactor_GlobalVel", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
implement functions needed for Testable
Definition: EquivInertialNavFactor_GlobalVel.h:136
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
A Gaussian noise model created by specifying a square root information matrix.
Definition: NoiseModel.cpp:81
EquivInertialNavFactor_GlobalVel(const Key &Pose1, const Key &Vel1, const Key &IMUBias1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, boost::optional< IMUBIAS > Bias_initial=boost::none, boost::optional< POSE > body_P_sensor=boost::none)
Constructor.
Definition: EquivInertialNavFactor_GlobalVel.h:120
boost::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:33
T inverse(const T &t)
unary functions
Definition: lieProxies.h:43
Nonlinear factor base class.
Definition: NonlinearFactor.h:50
friend class boost::serialization::access
Serialization function.
Definition: EquivInertialNavFactor_GlobalVel.h:653
EquivInertialNavFactor_GlobalVel()
default constructor - only use for serialization
Definition: EquivInertialNavFactor_GlobalVel.h:117
Non-linear factor base classes.
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H=boost::none)
Exponential map at identity - create a rotation from canonical coordinates using Rodrigues' formula.
Definition: Rot3.h:316
3D rotation represented as a rotation matrix or quaternion
Vector concatVectors(const std::list< Vector > &vs)
concatenate Vectors
Definition: Vector.cpp:264
A convenient base class for creating your own NoiseModelFactor with 5 variables.
Definition: NonlinearFactor.h:578
Matrix collect(const std::vector< const Matrix * > &matrices, size_t m, size_t n)
create a matrix by concatenating Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:438
Matrix stack(size_t nrMatrices,...)
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:392
Key key1() const
methods to retrieve keys
Definition: NonlinearFactor.h:616
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
typedef and functions to augment Eigen's MatrixXd
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
A Gaussian noise model created by specifying a covariance matrix.
Definition: NoiseModel.cpp:112
Some functions to compute numerical derivatives.
virtual bool equals(const NonlinearFactor &f, double tol=1e-9) const
Check if two factors are equal.
Definition: NonlinearFactor.cpp:71
bool equals(const This &other, double tol=1e-9) const
check equality
Definition: Factor.cpp:42