Loading [MathJax]/extensions/tex2jax.js
gtsam  4.0.0
gtsam
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
iterative.h File Reference

Iterative methods, implementation. More...

Go to the source code of this file.

Classes

class  gtsam::System
 Helper class encapsulating the combined system |Ax-b_|^2 Needed to run Conjugate Gradients on matrices. More...
 

Namespaces

 gtsam
 Global functions in a separate testing namespace.
 

Functions

template<class S , class V , class E >
gtsam::conjugateGradients (const S &Ab, V x, const ConjugateGradientParameters &parameters, bool steepest=false)
 Method of conjugate gradients (CG) template "System" class S needs gradient(S,v), e=S*v, v=S^e "Vector" class V needs dot(v,v), -v, v+v, s*v "Vector" class E needs dot(v,v) More...
 
GTSAM_EXPORT Vector gtsam::steepestDescent (const System &Ab, const Vector &x, const IterativeOptimizationParameters &parameters)
 Method of steepest gradients, System version.
 
Vector gtsam::conjugateGradientDescent (const System &Ab, const Vector &x, const ConjugateGradientParameters &parameters)
 Method of conjugate gradients (CG), System version.
 
Vector gtsam::steepestDescent (const Matrix &A, const Vector &b, const Vector &x, const ConjugateGradientParameters &parameters)
 convenience calls using matrices, will create System class internally: More...
 
Vector gtsam::conjugateGradientDescent (const Matrix &A, const Vector &b, const Vector &x, const ConjugateGradientParameters &parameters)
 Method of conjugate gradients (CG), Matrix version.
 
VectorValues gtsam::steepestDescent (const GaussianFactorGraph &fg, const VectorValues &x, const ConjugateGradientParameters &parameters)
 Method of steepest gradients, Gaussian Factor Graph version.
 
VectorValues gtsam::conjugateGradientDescent (const GaussianFactorGraph &fg, const VectorValues &x, const ConjugateGradientParameters &parameters)
 Method of conjugate gradients (CG), Gaussian Factor Graph version.
 

Detailed Description

Iterative methods, implementation.

Author
Frank Dellaert
Date
Dec 28, 2009