37 typedef boost::shared_ptr<This> shared_ptr;
38 typedef boost::shared_ptr<ConditionalType> sharedConditional;
47 template<
typename ITERATOR>
48 GaussianBayesNet(ITERATOR firstConditional, ITERATOR lastConditional) :
Base(firstConditional, lastConditional) {}
51 template<
class CONTAINER>
55 template<
class DERIVEDCONDITIONAL>
67 bool equals(
const This& bn,
double tol = 1e-9)
const;
98 std::pair<Matrix, Vector> matrix(
const Ordering& ordering)
const;
105 std::pair<Matrix, Vector> matrix()
const;
159 double determinant()
const;
167 double logDeterminant()
const;
185 const std::string& s =
"",
186 const KeyFormatter& formatter = DefaultKeyFormatter)
const override {
197 void saveGraph(
const std::string& s,
const KeyFormatter& keyFormatter =
198 DefaultKeyFormatter)
const;
204 friend class boost::serialization::access;
205 template<
class ARCHIVE>
206 void serialize(ARCHIVE & ar,
const unsigned int ) {
207 ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(
Base);
Conditional Gaussian Base class.
Included from all GTSAM files.
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
std::string serialize(const T &input)
serializes to a string
Definition: serialization.h:112
Point3 optimize(const NonlinearFactorGraph &graph, const Values &values, Key landmarkKey)
Optimize for triangulation.
Definition: triangulation.cpp:73
void print(const Matrix &A, const string &s, ostream &stream)
print without optional string, must specify cout yourself
Definition: Matrix.cpp:155
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
A manifold defines a space in which there is a notion of a linear tangent space that can be centered ...
Definition: concepts.h:30
Template to create a binary predicate.
Definition: Testable.h:111
A helper that implements the traits interface for GTSAM types.
Definition: Testable.h:151
A factor graph is a bipartite graph with factor nodes connected to variable nodes.
Definition: FactorGraph.h:93
Definition: Ordering.h:34
A Bayes net made from linear-Gaussian densities.
Definition: GaussianBayesNet.h:31
void print(const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const override
print graph
Definition: GaussianBayesNet.h:184
GaussianBayesNet(const FactorGraph< DERIVEDCONDITIONAL > &graph)
Implicit copy/downcast constructor to override explicit template container constructor.
Definition: GaussianBayesNet.h:56
virtual ~GaussianBayesNet()
Destructor.
Definition: GaussianBayesNet.h:59
GaussianBayesNet(const CONTAINER &conditionals)
Construct from container of factors (shared_ptr or plain objects)
Definition: GaussianBayesNet.h:52
GaussianBayesNet()
Construct empty factor graph.
Definition: GaussianBayesNet.h:44
GaussianBayesNet(ITERATOR firstConditional, ITERATOR lastConditional)
Construct from iterator over conditionals.
Definition: GaussianBayesNet.h:48
A conditional Gaussian functions as the node in a Bayes network It has a set of parents y,...
Definition: GaussianConditional.h:39
This class represents a collection of vector-valued variables associated each with a unique integer i...
Definition: VectorValues.h:74