Loading [MathJax]/extensions/tex2jax.js
gtsam 4.1.1
gtsam
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Basis.h File Reference

Compute an interpolating basis. More...

Go to the source code of this file.

Classes

class  gtsam::Basis< DERIVED >
 CRTP Base class for function bases. More...
 
class  gtsam::Basis< DERIVED >::EvaluationFunctor
 An instance of an EvaluationFunctor calculates f(x;p) at a given x, applied to Parameters p. More...
 
class  gtsam::Basis< DERIVED >::VectorEvaluationFunctor< M >
 VectorEvaluationFunctor at a given x, applied to ParameterMatrix<M>. More...
 
class  gtsam::Basis< DERIVED >::VectorComponentFunctor< M >
 Given a M*N Matrix of M-vectors at N polynomial points, an instance of VectorComponentFunctor computes the N-vector value for a specific row component of the M-vectors at all the polynomial points. More...
 
class  gtsam::Basis< DERIVED >::ManifoldEvaluationFunctor< T >
 Manifold EvaluationFunctor at a given x, applied to ParameterMatrix<M>. More...
 
class  gtsam::Basis< DERIVED >::DerivativeFunctorBase
 Base class for functors below that calculate derivative weights. More...
 
class  gtsam::Basis< DERIVED >::DerivativeFunctor
 An instance of a DerivativeFunctor calculates f'(x;p) at a given x, applied to Parameters p. More...
 
class  gtsam::Basis< DERIVED >::VectorDerivativeFunctor< M >
 VectorDerivativeFunctor at a given x, applied to ParameterMatrix<M>. More...
 
class  gtsam::Basis< DERIVED >::ComponentDerivativeFunctor< M >
 Given a M*N Matrix of M-vectors at N polynomial points, an instance of ComponentDerivativeFunctor computes the N-vector derivative for a specific row component of the M-vectors at all the polynomial points. More...
 

Namespaces

namespace  gtsam
 Global functions in a separate testing namespace.
 

Typedefs

using gtsam::Weights = Eigen::Matrix< double, 1, -1 >
 

Functions

template<size_t M>
Matrix gtsam::kroneckerProductIdentity (const Weights &w)
 Function for computing the kronecker product of the 1*N Weight vector w with the MxM identity matrix I efficiently. More...
 

Detailed Description

Compute an interpolating basis.

Author
Varun Agrawal, Jing Dong, Frank Dellaert
Date
July 4, 2020