gtsam 4.1.1
gtsam
|
VectorEvaluationFunctor at a given x, applied to ParameterMatrix<M>.
This functor is used to evaluate a parameterized function at a given scalar value x. When given a specific M*N parameters, returns an M-vector the M corresponding functions at x, possibly with Jacobians wrpt the parameters.
Public Member Functions | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | VectorEvaluationFunctor () |
For serialization. | |
VectorEvaluationFunctor (size_t N, double x) | |
Default Constructor. | |
VectorEvaluationFunctor (size_t N, double x, double a, double b) | |
Constructor, with interval [a,b]. | |
VectorM | apply (const ParameterMatrix< M > &P, OptionalJacobian< -1, -1 > H=boost::none) const |
M-dimensional evaluation. | |
VectorM | operator() (const ParameterMatrix< M > &P, OptionalJacobian< -1, -1 > H=boost::none) const |
c++ sugar | |
Protected Types | |
using | VectorM = Eigen::Matrix< double, M, 1 > |
using | Jacobian = Eigen::Matrix< double, M, -1 > |
Protected Member Functions | |
void | calculateJacobian () |
Calculate the M*(M*N) Jacobian of this functor with respect to the M*N parameter matrix P . More... | |
![]() | |
EvaluationFunctor () | |
For serialization. | |
EvaluationFunctor (size_t N, double x) | |
Constructor with interval [a,b]. | |
EvaluationFunctor (size_t N, double x, double a, double b) | |
Constructor with interval [a,b]. | |
double | apply (const typename DERIVED::Parameters &p, OptionalJacobian<-1, -1 > H=boost::none) const |
Regular 1D evaluation. | |
double | operator() (const typename DERIVED::Parameters &p, OptionalJacobian<-1, -1 > H=boost::none) const |
c++ sugar | |
void | print (const std::string &s="") const |
Protected Attributes | |
Jacobian | H_ |
![]() | |
Weights | weights_ |
|
inlineprotected |
Calculate the M*(M*N)
Jacobian of this functor with respect to the M*N parameter matrix P
.
We flatten assuming column-major order, e.g., if N=3 and M=2, we have H =[ w(0) 0 w(1) 0 w(2) 0 0 w(0) 0 w(1) 0 w(2) ] i.e., the Kronecker product of weights_ with the MxM identity matrix.