|
| Pose3 () |
| Default constructor is origin.
|
|
| Pose3 (const Pose3 &pose) |
| Copy constructor.
|
|
| Pose3 (const Rot3 &R, const Point3 &t) |
| Construct from R,t.
|
|
| Pose3 (const Pose2 &pose2) |
| Construct from Pose2. More...
|
|
| Pose3 (const Matrix &T) |
| Constructor from 4*4 matrix.
|
|
static Pose3 | Create (const Rot3 &R, const Point3 &t, OptionalJacobian< 6, 3 > HR=boost::none, OptionalJacobian< 6, 3 > Ht=boost::none) |
| Named constructor with derivatives.
|
|
static boost::optional< Pose3 > | Align (const std::vector< Point3Pair > &abPointPairs) |
| Create Pose3 by aligning two point pairs A pose aTb is estimated between pairs (a_point, b_point) such that a_point = aTb * b_point Note this allows for noise on the points but in that case the mapping will not be exact.
|
|
|
Matrix6 | AdjointMap () const |
| Calculate Adjoint map, transforming a twist in this pose's (i.e, body) frame to the world spatial frame Ad_pose is 6*6 matrix that when applied to twist xi \( [R_x,R_y,R_z,T_x,T_y,T_z] \), returns Ad_pose(xi)
|
|
Vector6 | Adjoint (const Vector6 &xi_b, OptionalJacobian< 6, 6 > H_this=boost::none, OptionalJacobian< 6, 6 > H_xib=boost::none) const |
| Apply this pose's AdjointMap Ad_g to a twist \( \xi_b \), i.e. More...
|
|
Vector6 | AdjointTranspose (const Vector6 &x, OptionalJacobian< 6, 6 > H_this=boost::none, OptionalJacobian< 6, 6 > H_x=boost::none) const |
| The dual version of Adjoint.
|
|
static Pose3 | Expmap (const Vector6 &xi, OptionalJacobian< 6, 6 > Hxi=boost::none) |
| Exponential map at identity - create a rotation from canonical coordinates \( [R_x,R_y,R_z,T_x,T_y,T_z] \). More...
|
|
static Vector6 | Logmap (const Pose3 &pose, OptionalJacobian< 6, 6 > Hpose=boost::none) |
| Log map at identity - return the canonical coordinates \( [R_x,R_y,R_z,T_x,T_y,T_z] \) of this rotation.
|
|
static Matrix6 | adjointMap (const Vector6 &xi) |
| Compute the [ad(w,v)] operator as defined in [Kobilarov09siggraph], pg 11 [ad(w,v)] = [w^, zero3; v^, w^] Note that this is the matrix representation of the adjoint operator for se3 Lie algebra, aka the Lie bracket, and also the derivative of Adjoint map for the Lie group SE3. More...
|
|
static Vector6 | adjoint (const Vector6 &xi, const Vector6 &y, OptionalJacobian< 6, 6 > Hxi=boost::none, OptionalJacobian< 6, 6 > H_y=boost::none) |
| Action of the adjointMap on a Lie-algebra vector y, with optional derivatives.
|
|
static Matrix6 | adjointMap_ (const Vector6 &xi) |
|
static Vector6 | adjoint_ (const Vector6 &xi, const Vector6 &y) |
|
static Vector6 | adjointTranspose (const Vector6 &xi, const Vector6 &y, OptionalJacobian< 6, 6 > Hxi=boost::none, OptionalJacobian< 6, 6 > H_y=boost::none) |
| The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
|
|
static Matrix6 | ExpmapDerivative (const Vector6 &xi) |
| Derivative of Expmap.
|
|
static Matrix6 | LogmapDerivative (const Pose3 &xi) |
| Derivative of Logmap.
|
|
static Matrix3 | ComputeQforExpmapDerivative (const Vector6 &xi, double nearZeroThreshold=1e-5) |
| Compute the 3x3 bottom-left block Q of SE3 Expmap right derivative matrix J_r(xi) = [J_(w) Z_3x3; Q_r J_(w)] where J_(w) is the SO3 Expmap right derivative. More...
|
|
static Matrix | wedge (double wx, double wy, double wz, double vx, double vy, double vz) |
| wedge for Pose3: More...
|
|
|
|
void | print (const std::string &s="") const |
| print with optional string
|
|
bool | equals (const Pose3 &pose, double tol=1e-9) const |
| assert equality up to a tolerance
|
|
|
Point3 | transformFrom (const Point3 &point, OptionalJacobian< 3, 6 > Hself=boost::none, OptionalJacobian< 3, 3 > Hpoint=boost::none) const |
| takes point in Pose coordinates and transforms it to world coordinates More...
|
|
Point3 | operator* (const Point3 &point) const |
| syntactic sugar for transformFrom
|
|
Point3 | transformTo (const Point3 &point, OptionalJacobian< 3, 6 > Hself=boost::none, OptionalJacobian< 3, 3 > Hpoint=boost::none) const |
| takes point in world coordinates and transforms it to Pose coordinates More...
|
|
|
const Rot3 & | rotation (OptionalJacobian< 3, 6 > Hself=boost::none) const |
| get rotation
|
|
const Point3 & | translation (OptionalJacobian< 3, 6 > Hself=boost::none) const |
| get translation
|
|
double | x () const |
| get x
|
|
double | y () const |
| get y
|
|
double | z () const |
| get z
|
|
Matrix4 | matrix () const |
| convert to 4*4 matrix
|
|
Pose3 | transformPoseFrom (const Pose3 &aTb, OptionalJacobian< 6, 6 > Hself=boost::none, OptionalJacobian< 6, 6 > HaTb=boost::none) const |
| Assuming self == wTa, takes a pose aTb in local coordinates and transforms it to world coordinates wTb = wTa * aTb. More...
|
|
Pose3 | transformPoseTo (const Pose3 &wTb, OptionalJacobian< 6, 6 > Hself=boost::none, OptionalJacobian< 6, 6 > HwTb=boost::none) const |
| Assuming self == wTa, takes a pose wTb in world coordinates and transforms it to local coordinates aTb = inv(wTa) * wTb.
|
|
double | range (const Point3 &point, OptionalJacobian< 1, 6 > Hself=boost::none, OptionalJacobian< 1, 3 > Hpoint=boost::none) const |
| Calculate range to a landmark. More...
|
|
double | range (const Pose3 &pose, OptionalJacobian< 1, 6 > Hself=boost::none, OptionalJacobian< 1, 6 > Hpose=boost::none) const |
| Calculate range to another pose. More...
|
|
Unit3 | bearing (const Point3 &point, OptionalJacobian< 2, 6 > Hself=boost::none, OptionalJacobian< 2, 3 > Hpoint=boost::none) const |
| Calculate bearing to a landmark. More...
|
|
Unit3 | bearing (const Pose3 &pose, OptionalJacobian< 2, 6 > Hself=boost::none, OptionalJacobian< 2, 6 > Hpose=boost::none) const |
| Calculate bearing to another pose. More...
|
|
const Pose3 & | derived () const |
|
Pose3 | compose (const Pose3 &g) const |
|
Pose3 | compose (const Pose3 &g, ChartJacobian H1, ChartJacobian H2=boost::none) const |
|
SOn | compose (const SOn &g, DynamicJacobian H1, DynamicJacobian H2) const |
|
SOn | compose (const SOn &g, DynamicJacobian H1, DynamicJacobian H2) const |
|
Pose3 | between (const Pose3 &g) const |
|
Pose3 | between (const Pose3 &g, ChartJacobian H1, ChartJacobian H2=boost::none) const |
|
SOn | between (const SOn &g, DynamicJacobian H1, DynamicJacobian H2) const |
|
SOn | between (const SOn &g, DynamicJacobian H1, DynamicJacobian H2) const |
|
Pose3 | inverse (ChartJacobian H) const |
|
Pose3 | expmap (const TangentVector &v) const |
| expmap as required by manifold concept Applies exponential map to v and composes with *this
|
|
Pose3 | expmap (const TangentVector &v, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| expmap with optional derivatives
|
|
TangentVector | logmap (const Pose3 &g) const |
| logmap as required by manifold concept Applies logarithmic map to group element that takes *this to g
|
|
TangentVector | logmap (const Pose3 &g, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| logmap with optional derivatives
|
|
Pose3 | retract (const TangentVector &v) const |
| retract as required by manifold concept: applies v at *this
|
|
Pose3 | retract (const TangentVector &v, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| retract with optional derivatives
|
|
TangentVector | localCoordinates (const Pose3 &g) const |
| localCoordinates as required by manifold concept: finds tangent vector between *this and g
|
|
TangentVector | localCoordinates (const Pose3 &g, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| localCoordinates with optional derivatives
|
|
Matrix6 gtsam::Pose3::adjointMap |
( |
const Vector6 & |
xi | ) |
|
|
static |
Compute the [ad(w,v)] operator as defined in [Kobilarov09siggraph], pg 11 [ad(w,v)] = [w^, zero3; v^, w^] Note that this is the matrix representation of the adjoint operator for se3 Lie algebra, aka the Lie bracket, and also the derivative of Adjoint map for the Lie group SE3.
Let \( \hat{\xi}_i \) be the se3 Lie algebra, and \( \hat{\xi}_i^\vee = \xi_i = [\omega_i,v_i] \in \mathbb{R}^6\) be its vector representation. We have the following relationship: \( [\hat{\xi}_1,\hat{\xi}_2]^\vee = ad_{\xi_1}(\xi_2) = [ad_{(\omega_1,v_1)}]*\xi_2 \)
We use this to compute the discrete version of the inverse right-trivialized tangent map, and its inverse transpose in the discrete Euler Poincare' (DEP) operator.