gtsam 4.1.1
gtsam
gtsam::WhiteNoiseFactor Class Reference

Detailed Description

Binary factor to estimate parameters of zero-mean Gaussian white noise.

This factor uses the mean-precision parameterization.

Takes three template arguments: Key: key type to use for mean Key: key type to use for precision Values: Values type for optimization

+ Inheritance diagram for gtsam::WhiteNoiseFactor:

Standard Constructors

 WhiteNoiseFactor (double z, Key meanKey, Key precisionKey)
 Construct from measurement. More...
 

Advanced Constructors

 ~WhiteNoiseFactor () override
 Destructor.
 

Testable

void print (const std::string &p="WhiteNoiseFactor", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
 Print. More...
 

Standard Interface

size_t dim () const override
 get the dimension of the factor (number of rows on linearization) More...
 
double error (const Values &x) const override
 Calculate the error of the factor, typically equal to log-likelihood. More...
 
virtual Vector unwhitenedError (const Values &x) const
 Vector of errors "unwhitened" does not make sense for this factor What is meant typically is only "e" above Here we shoehorn sqrt(2*error(p)) TODO: Where is this used? should disappear.
 

Advanced Interface

boost::shared_ptr< GaussianFactorlinearize (const Values &x) const override
 linearize returns a Hessianfactor that is an approximation of error(p) More...
 

Static Public Member Functions

static double f (double z, double u, double p)
 negative log likelihood as a function of mean \( \mu \) and precision \( \tau \) More...
 
static HessianFactor::shared_ptr linearize (double z, double u, double p, Key j1, Key j2)
 linearize returns a Hessianfactor that approximates error Hessian is More...
 

Additional Inherited Members

- Public Member Functions inherited from gtsam::NonlinearFactor
 NonlinearFactor ()
 Default constructor for I/O only.
 
template<typename CONTAINER >
 NonlinearFactor (const CONTAINER &keys)
 Constructor from a collection of the keys involved in this factor.
 
virtual bool equals (const NonlinearFactor &f, double tol=1e-9) const
 Check if two factors are equal. More...
 
virtual ~NonlinearFactor ()
 Destructor.
 
virtual bool active (const Values &) const
 Checks whether a factor should be used based on a set of values. More...
 
virtual shared_ptr clone () const
 Creates a shared_ptr clone of the factor - needs to be specialized to allow for subclasses. More...
 
virtual shared_ptr rekey (const std::map< Key, Key > &rekey_mapping) const
 Creates a shared_ptr clone of the factor with different keys using a map from old->new keys. More...
 
virtual shared_ptr rekey (const KeyVector &new_keys) const
 Clones a factor and fully replaces its keys. More...
 
virtual bool sendable () const
 Should the factor be evaluated in the same thread as the caller This is to enable factors that has shared states (like the Python GIL lock) More...
 
- Public Member Functions inherited from gtsam::Factor
virtual ~Factor ()=default
 Default destructor.
 
KeyVectorkeys ()
 
iterator begin ()
 Iterator at beginning of involved variable keys.
 
iterator end ()
 Iterator at end of involved variable keys.
 
virtual void printKeys (const std::string &s="Factor", const KeyFormatter &formatter=DefaultKeyFormatter) const
 print only keys More...
 
Key front () const
 First key.
 
Key back () const
 Last key.
 
const_iterator find (Key key) const
 find
 
const KeyVectorkeys () const
 Access the factor's involved variable keys.
 
const_iterator begin () const
 Iterator at beginning of involved variable keys.
 
const_iterator end () const
 Iterator at end of involved variable keys.
 
size_t size () const
 
- Public Types inherited from gtsam::NonlinearFactor
typedef boost::shared_ptr< Thisshared_ptr
 
- Public Types inherited from gtsam::Factor
typedef KeyVector::iterator iterator
 Iterator over keys.
 
typedef KeyVector::const_iterator const_iterator
 Const iterator over keys.
 
- Protected Types inherited from gtsam::NonlinearFactor
typedef Factor Base
 
typedef NonlinearFactor This
 
- Protected Member Functions inherited from gtsam::Factor
 Factor ()
 Default constructor for I/O.
 
template<typename CONTAINER >
 Factor (const CONTAINER &keys)
 Construct factor from container of keys. More...
 
template<typename ITERATOR >
 Factor (ITERATOR first, ITERATOR last)
 Construct factor from iterator keys. More...
 
bool equals (const This &other, double tol=1e-9) const
 check equality
 
- Static Protected Member Functions inherited from gtsam::Factor
template<typename CONTAINER >
static Factor FromKeys (const CONTAINER &keys)
 Construct factor from container of keys. More...
 
template<typename ITERATOR >
static Factor FromIterators (ITERATOR first, ITERATOR last)
 Construct factor from iterator keys. More...
 
- Protected Attributes inherited from gtsam::Factor
KeyVector keys_
 The keys involved in this factor.
 

Constructor & Destructor Documentation

◆ WhiteNoiseFactor()

gtsam::WhiteNoiseFactor::WhiteNoiseFactor ( double  z,
Key  meanKey,
Key  precisionKey 
)
inline

Construct from measurement.

Parameters
zMeasurment value
meanKeyKey for mean variable
precisionKeyKey for precision variable

Member Function Documentation

◆ dim()

size_t gtsam::WhiteNoiseFactor::dim ( ) const
inlineoverridevirtual

get the dimension of the factor (number of rows on linearization)

Implements gtsam::NonlinearFactor.

◆ error()

double gtsam::WhiteNoiseFactor::error ( const Values x) const
inlineoverridevirtual

Calculate the error of the factor, typically equal to log-likelihood.

Implements gtsam::NonlinearFactor.

◆ f()

static double gtsam::WhiteNoiseFactor::f ( double  z,
double  u,
double  p 
)
inlinestatic

negative log likelihood as a function of mean \( \mu \) and precision \( \tau \)

\[ f(z, \tau, \mu) = -\log \left( \frac{\sqrt{\tau}}{\sqrt{2\pi}} \exp(-0.5\tau(z-\mu)^2) \right) = \log(\sqrt{2\pi}) - 0.5* \log(\tau) + 0.5\tau(z-\mu)^2 \]

◆ linearize() [1/2]

boost::shared_ptr< GaussianFactor > gtsam::WhiteNoiseFactor::linearize ( const Values x) const
inlineoverridevirtual

linearize returns a Hessianfactor that is an approximation of error(p)

Implements gtsam::NonlinearFactor.

◆ linearize() [2/2]

static HessianFactor::shared_ptr gtsam::WhiteNoiseFactor::linearize ( double  z,
double  u,
double  p,
Key  j1,
Key  j2 
)
inlinestatic

linearize returns a Hessianfactor that approximates error Hessian is

\[ 0.5f - x^T g + 0.5*x^T G x \]

Taylor expansion is

\[ f(x+dx) = f(x) + df(x) dx + 0.5 ddf(x) dx^2 \]

So f = 2 f(x), g = -df(x), G = ddf(x)

◆ print()

void gtsam::WhiteNoiseFactor::print ( const std::string &  p = "WhiteNoiseFactor",
const KeyFormatter keyFormatter = DefaultKeyFormatter 
) const
inlineoverridevirtual

Print.

Reimplemented from gtsam::NonlinearFactor.


The documentation for this class was generated from the following file: