template<class CAMERA>
class gtsam::CameraSet< CAMERA >
A set of cameras, all with their own calibration.
|
virtual | ~CameraSet ()=default |
| Destructor.
|
|
virtual void | print (const std::string &s="") const |
| print More...
|
|
bool | equals (const CameraSet &p, double tol=1e-9) const |
| equals
|
|
template<class POINT > |
ZVector | project2 (const POINT &point, boost::optional< FBlocks & > Fs=boost::none, boost::optional< Matrix & > E=boost::none) const |
| Project a point (possibly Unit3 at infinity), with derivatives Note that F is a sparse block-diagonal matrix, so instead of a large dense matrix this function returns the diagonal blocks. More...
|
|
template<class POINT > |
Vector | reprojectionError (const POINT &point, const ZVector &measured, boost::optional< FBlocks & > Fs=boost::none, boost::optional< Matrix & > E=boost::none) const |
| Calculate vector [project2(point)-z] of re-projection errors.
|
|
|
template<int N, int ND> |
static SymmetricBlockMatrix | SchurComplement (const std::vector< Eigen::Matrix< double, ZDim, ND >, Eigen::aligned_allocator< Eigen::Matrix< double, ZDim, ND > > > &Fs, const Matrix &E, const Eigen::Matrix< double, N, N > &P, const Vector &b) |
| Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix G = F' * F - F' * E * P * E' * F g = F' * (b - E * P * E' * b) Fixed size version.
|
|
template<int N, int ND, int NDD> |
static SymmetricBlockMatrix | SchurComplementAndRearrangeBlocks (const std::vector< Eigen::Matrix< double, ZDim, ND >, Eigen::aligned_allocator< Eigen::Matrix< double, ZDim, ND > > > &Fs, const Matrix &E, const Eigen::Matrix< double, N, N > &P, const Vector &b, const KeyVector &jacobianKeys, const KeyVector &hessianKeys) |
| Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix G = F' * F - F' * E * P * E' * F g = F' * (b - E * P * E' * b) In this version, we allow for the case where the keys in the Jacobian are organized differently from the keys in the output SymmetricBlockMatrix In particular: each diagonal block of the Jacobian F captures 2 poses (useful for rolling shutter and extrinsic calibration) such that F keeps the block structure that makes the Schur complement trick fast. More...
|
|
template<int N> |
static SymmetricBlockMatrix | SchurComplement (const FBlocks &Fs, const Matrix &E, const Eigen::Matrix< double, N, N > &P, const Vector &b) |
| Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix G = F' * F - F' * E * P * E' * F g = F' * (b - E * P * E' * b) Fixed size version.
|
|
template<int N> |
static void | ComputePointCovariance (Eigen::Matrix< double, N, N > &P, const Matrix &E, double lambda, bool diagonalDamping=false) |
| Computes Point Covariance P, with lambda parameter.
|
|
static Matrix | PointCov (const Matrix &E, const double lambda=0.0, bool diagonalDamping=false) |
| Computes Point Covariance P, with lambda parameter, dynamic version.
|
|
static SymmetricBlockMatrix | SchurComplement (const FBlocks &Fblocks, const Matrix &E, const Vector &b, const double lambda=0.0, bool diagonalDamping=false) |
| Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix Dynamic version.
|
|
template<int N> |
static void | UpdateSchurComplement (const FBlocks &Fs, const Matrix &E, const Eigen::Matrix< double, N, N > &P, const Vector &b, const KeyVector &allKeys, const KeyVector &keys, SymmetricBlockMatrix &augmentedHessian) |
| Applies Schur complement (exploiting block structure) to get a smart factor on cameras, and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
|
|
template<class CAMERA >
template<int N, int ND, int NDD>
static SymmetricBlockMatrix gtsam::CameraSet< CAMERA >::SchurComplementAndRearrangeBlocks |
( |
const std::vector< Eigen::Matrix< double, ZDim, ND >, Eigen::aligned_allocator< Eigen::Matrix< double, ZDim, ND > > > & |
Fs, |
|
|
const Matrix & |
E, |
|
|
const Eigen::Matrix< double, N, N > & |
P, |
|
|
const Vector & |
b, |
|
|
const KeyVector & |
jacobianKeys, |
|
|
const KeyVector & |
hessianKeys |
|
) |
| |
|
inlinestatic |
Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix G = F' * F - F' * E * P * E' * F g = F' * (b - E * P * E' * b) In this version, we allow for the case where the keys in the Jacobian are organized differently from the keys in the output SymmetricBlockMatrix In particular: each diagonal block of the Jacobian F captures 2 poses (useful for rolling shutter and extrinsic calibration) such that F keeps the block structure that makes the Schur complement trick fast.
N = 2 or 3 (point dimension), ND is the Jacobian block dimension, NDD is the Hessian block dimension