gtsam 4.1.1
gtsam
EquivInertialNavFactor_GlobalVel_NoBias.h
Go to the documentation of this file.
1
2/* ----------------------------------------------------------------------------
3
4 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
5 * Atlanta, Georgia 30332-0415
6 * All Rights Reserved
7 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
8
9 * See LICENSE for the license information
10
11 * -------------------------------------------------------------------------- */
12
20#pragma once
21
24#include <gtsam/geometry/Rot3.h>
25#include <gtsam/base/Matrix.h>
26
27// Using numerical derivative to calculate d(Pose3::Expmap)/dw
29
30#include <boost/optional.hpp>
31
32#include <ostream>
33
34namespace gtsam {
35
36/*
37 * NOTES:
38 * =====
39 * Concept: Based on [Lupton12tro]
40 * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations.
41 * Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began).
42 * All sensor-to-body transformations are performed here.
43 * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial.
44 * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel_NoBias factor, which will
45 * relate between navigation variables at the two time instances (t0 and current time).
46 *
47 * Other notes:
48 * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
49 * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
50 * - Camera and IMU frames are identical
51 * - The user should specify a continuous equivalent noise covariance, which can be calculated using
52 * the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
53 * matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
54 * discrete form using the supplied delta_t between sub-sequential measurements.
55 * - Earth-rate correction:
56 * + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
57 * frame (Local-Level system: ENU or NED, see above).
58 * + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
59 * + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
60 * Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
61 *
62 * - Frame Notation:
63 * Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
64 * So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
65 * And the transformation from the body frame to the world frame would be: world_P_body
66 * This allows visual chaining. For example, converting the sensed angular velocity of the IMU
67 * (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
68 * world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
69 *
70 *
71 * - Common Quantity Types
72 * P : pose/3d transformation
73 * R : rotation
74 * omega : angular velocity
75 * t : translation
76 * v : velocity
77 * a : acceleration
78 *
79 * - Common Frames
80 * sensor : the coordinate system attached to the sensor origin
81 * body : the coordinate system attached to body/inertial frame.
82 * Unless an optional frame transformation is provided, the
83 * sensor frame and the body frame will be identical
84 * world : the global/world coordinate frame. This is assumed to be
85 * a tangent plane to the earth's surface somewhere near the
86 * vehicle
87 */
88
89template<class POSE, class VELOCITY>
90class EquivInertialNavFactor_GlobalVel_NoBias : public NoiseModelFactor4<POSE, VELOCITY, POSE, VELOCITY> {
91
92private:
93
96
97 Vector delta_pos_in_t0_;
98 Vector delta_vel_in_t0_;
99 Vector3 delta_angles_;
100 double dt12_;
101
102 Vector world_g_;
103 Vector world_rho_;
104 Vector world_omega_earth_;
105
106 Matrix Jacobian_wrt_t0_Overall_;
107
108 boost::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
109
110public:
111
112 // shorthand for a smart pointer to a factor
113 typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel_NoBias> shared_ptr;
114
117
119 EquivInertialNavFactor_GlobalVel_NoBias(const Key& Pose1, const Key& Vel1, const Key& Pose2, const Key& Vel2,
120 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
121 double dt12, const Vector world_g, const Vector world_rho,
122 const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent,
123 const Matrix& Jacobian_wrt_t0_Overall,
124 boost::optional<POSE> body_P_sensor = boost::none) :
125 Base(model_equivalent, Pose1, Vel1, Pose2, Vel2),
126 delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
127 dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall),
128 body_P_sensor_(body_P_sensor) { }
129
131
135 virtual void print(
136 const std::string& s = "EquivInertialNavFactor_GlobalVel_NoBias",
137 const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
138 std::cout << s << "("
139 << keyFormatter(this->key1()) << ","
140 << keyFormatter(this->key2()) << ","
141 << keyFormatter(this->key3()) << ","
142 << keyFormatter(this->key4()) << "\n";
143 std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
144 std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
145 std::cout << "delta_angles: " << this->delta_angles_ << std::endl;
146 std::cout << "dt12: " << this->dt12_ << std::endl;
147 std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
148 std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
149 std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
150 if(this->body_P_sensor_)
151 this->body_P_sensor_->print(" sensor pose in body frame: ");
152 this->noiseModel_->print(" noise model");
153 }
154
156 bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
157 const This *e = dynamic_cast<const This*> (&expected);
158 return e != nullptr && Base::equals(*e, tol)
159 && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
160 && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
161 && (delta_angles_ - e->delta_angles_).norm() < tol
162 && (dt12_ - e->dt12_) < tol
163 && (world_g_ - e->world_g_).norm() < tol
164 && (world_rho_ - e->world_rho_).norm() < tol
165 && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
166 && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
167 }
168
169
170 POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1) const {
171
172 /* Position term */
173 Vector delta_pos_in_t0_corrected = delta_pos_in_t0_;
174
175 /* Rotation term */
176 Vector delta_angles_corrected = delta_angles_;
177
178 return predictPose_inertial(Pose1, Vel1,
179 delta_pos_in_t0_corrected, delta_angles_corrected,
180 dt12_, world_g_, world_rho_, world_omega_earth_);
181 }
182
183 static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1,
184 const Vector& delta_pos_in_t0, const Vector3& delta_angles,
185 const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){
186
187 const POSE& world_P1_body = Pose1;
188 const VELOCITY& world_V1_body = Vel1;
189
190 /* Position term */
191 Vector body_deltaPos_body = delta_pos_in_t0;
192
193 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
194 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
195
196 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
197 world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
198
199 /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
200 * the gravity should be canceled from the accelerometer measurements, bust since position
201 * is added with a delta velocity from a previous term, the actual delta time is more complicated.
202 * Need to figure out this in the future - currently because of this issue we'll get some more error
203 * in Z axis.
204 */
205
206 /* Rotation term */
207 Vector body_deltaAngles_body = delta_angles;
208
209 // Convert earth-related terms into the body frame
210 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
211 Vector body_rho = body_R_world * world_rho;
212 Vector body_omega_earth = body_R_world * world_omega_earth;
213
214 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
215 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
216
217 return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body));
218
219 }
220
221 VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1) const {
222
223
224 Vector delta_vel_in_t0_corrected = delta_vel_in_t0_;
225
226 return predictVelocity_inertial(Pose1, Vel1,
227 delta_vel_in_t0_corrected,
228 dt12_, world_g_, world_rho_, world_omega_earth_);
229 }
230
231 static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1,
232 const Vector& delta_vel_in_t0,
233 const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) {
234
235 const POSE& world_P1_body = Pose1;
236 const VELOCITY& world_V1_body = Vel1;
237
238 Vector body_deltaVel_body = delta_vel_in_t0;
239 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
240
241 VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
242
243 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
244 VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
245
246 // Predict
247 return Vel1.compose( VelDelta );
248
249 }
250
251 void predict(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2) const {
252 Pose2 = predictPose(Pose1, Vel1);
253 Vel2 = predictVelocity(Pose1, Vel1);
254 }
255
256 POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const {
257 // Predict
258 POSE Pose2Pred = predictPose(Pose1, Vel1);
259
260 // Calculate error
261 return Pose2.between(Pose2Pred);
262 }
263
264 VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const {
265 // Predict
266 VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1);
267
268 // Calculate error
269 return Vel2.between(Vel2Pred);
270 }
271
272 Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2,
273 boost::optional<Matrix&> H1 = boost::none,
274 boost::optional<Matrix&> H2 = boost::none,
275 boost::optional<Matrix&> H3 = boost::none,
276 boost::optional<Matrix&> H4 = boost::none) const {
277
278 // TODO: Write analytical derivative calculations
279 // Jacobian w.r.t. Pose1
280 if (H1){
281 Matrix H1_Pose = numericalDerivative11<POSE, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, _1, Vel1, Pose2, Vel2), Pose1);
282 Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, _1, Vel1, Pose2, Vel2), Pose1);
283 *H1 = stack(2, &H1_Pose, &H1_Vel);
284 }
285
286 // Jacobian w.r.t. Vel1
287 if (H2){
288 Matrix H2_Pose = numericalDerivative11<POSE, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, _1, Pose2, Vel2), Vel1);
289 Matrix H2_Vel = numericalDerivative11<VELOCITY, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, _1, Pose2, Vel2), Vel1);
290 *H2 = stack(2, &H2_Pose, &H2_Vel);
291 }
292
293 // Jacobian w.r.t. Pose2
294 if (H3){
295 Matrix H3_Pose = numericalDerivative11<POSE, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, _1, Vel2), Pose2);
296 Matrix H3_Vel = numericalDerivative11<VELOCITY, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, _1, Vel2), Pose2);
297 *H3 = stack(2, &H3_Pose, &H3_Vel);
298 }
299
300 // Jacobian w.r.t. Vel2
301 if (H4){
302 Matrix H4_Pose = numericalDerivative11<POSE, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, Pose2, _1), Vel2);
303 Matrix H4_Vel = numericalDerivative11<VELOCITY, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, Pose2, _1), Vel2);
304 *H4 = stack(2, &H4_Pose, &H4_Vel);
305 }
306
307 Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Pose2, Vel2)));
308 Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1, Pose2, Vel2)));
309
310 return concatVectors(2, &ErrPoseVector, &ErrVelVector);
311 }
312
313
314
315 static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1,
316 const Vector& delta_pos_in_t0, const Vector3& delta_angles,
317 double dt12, const Vector world_g, const Vector world_rho,
318 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
319
320 /* Position term */
321 Vector delta_pos_in_t0_corrected = delta_pos_in_t0;
322
323 /* Rotation term */
324 Vector delta_angles_corrected = delta_angles;
325 // Another alternative:
326 // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
327
328 return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
329 }
330
331 static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1,
332 const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho,
333 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
334
335 Vector delta_vel_in_t0_corrected = delta_vel_in_t0;
336
337 return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
338 }
339
340 static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2,
341 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
342 double dt12, const Vector world_g, const Vector world_rho,
343 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
344
345 Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
346 Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
347 }
348
349
350 static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt,
351 Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t,
352 const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
353 Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall,
354 boost::optional<POSE> p_body_P_sensor = boost::none){
355 // Note: all delta terms refer to an IMU\sensor system at t0
356 // Note: Earth-related terms are not accounted here but are incorporated in predict functions.
357
358 POSE body_P_sensor = POSE();
359 bool flag_use_body_P_sensor = false;
360 if (p_body_P_sensor){
361 body_P_sensor = *p_body_P_sensor;
362 flag_use_body_P_sensor = true;
363 }
364
365 delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
366 delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor);
367 delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor);
368
369 delta_t += msr_dt;
370
371 // Update EquivCov_Overall
372 Matrix Z_3x3 = Z_3x3;
373 Matrix I_3x3 = I_3x3;
374
375 Matrix H_pos_pos = numericalDerivative11<LieVector, LieVector>(std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0);
376 Matrix H_pos_vel = numericalDerivative11<LieVector, LieVector>(std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0);
377 Matrix H_pos_angles = Z_3x3;
378
379 Matrix H_vel_vel = numericalDerivative11<LieVector, LieVector>(std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor), delta_vel_in_t0);
380 Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor), delta_angles);
381 Matrix H_vel_pos = Z_3x3;
382
383 Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor), delta_angles);
384 Matrix H_angles_pos = Z_3x3;
385 Matrix H_angles_vel = Z_3x3;
386
387 Matrix F_angles = collect(3, &H_angles_angles, &H_angles_pos, &H_angles_vel);
388 Matrix F_pos = collect(3, &H_pos_angles, &H_pos_pos, &H_pos_vel);
389 Matrix F_vel = collect(3, &H_vel_angles, &H_vel_pos, &H_vel_vel);
390 Matrix F = stack(3, &F_angles, &F_pos, &F_vel);
391
392 noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
393 Matrix Q_d = inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() );
394
395 EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
396
397 // Update Jacobian_wrt_t0_Overall
398 Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
399 }
400
401 static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt,
402 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){
403
404 // Note: all delta terms refer to an IMU\sensor system at t0
405 // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
406
407 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
408 }
409
410
411
412 static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
413 const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){
414
415 // Note: all delta terms refer to an IMU\sensor system at t0
416
417 // Calculate the corrected measurements using the Bias object
418 Vector AccCorrected = msr_acc_t;
419 Vector body_t_a_body;
420 if (flag_use_body_P_sensor){
421 Matrix body_R_sensor = body_P_sensor.rotation().matrix();
422
423 Vector GyroCorrected(msr_gyro_t);
424
425 Vector body_omega_body = body_R_sensor * GyroCorrected;
426 Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
427
428 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
429 } else{
430 body_t_a_body = AccCorrected;
431 }
432
433 Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
434
435 return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
436 }
437
438
439 static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
440 const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){
441
442 // Note: all delta terms refer to an IMU\sensor system at t0
443
444 // Calculate the corrected measurements using the Bias object
445 Vector GyroCorrected = msr_gyro_t;
446
447 Vector body_t_omega_body;
448 if (flag_use_body_P_sensor){
449 body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
450 } else {
451 body_t_omega_body = GyroCorrected;
452 }
453
454 Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
455
456 R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
457 return Rot3::Logmap(R_t_to_t0);
458 }
459
460 static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
461 const noiseModel::Gaussian::shared_ptr& gaussian_process){
462
463 Matrix cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
464 Matrix cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
465 Matrix cov_process = inverse( gaussian_process->R().transpose() * gaussian_process->R() );
466
467 cov_process.block(0,0, 3,3) += cov_gyro;
468 cov_process.block(6,6, 3,3) += cov_acc;
469
470 return noiseModel::Gaussian::Covariance(cov_process);
471 }
472
473 static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
474 const noiseModel::Gaussian::shared_ptr& gaussian_process,
475 Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
476
477 cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
478 cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
479 cov_process_without_acc_gyro = inverse( gaussian_process->R().transpose() * gaussian_process->R() );
480 }
481
482 static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
483 Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
484
485 Matrix ENU_to_NED = (Matrix(3, 3) <<
486 0.0, 1.0, 0.0,
487 1.0, 0.0, 0.0,
488 0.0, 0.0, -1.0).finished();
489
490 Matrix NED_to_ENU = (Matrix(3, 3) <<
491 0.0, 1.0, 0.0,
492 1.0, 0.0, 0.0,
493 0.0, 0.0, -1.0).finished();
494
495 // Convert incoming parameters to ENU
496 Vector Pos_ENU = NED_to_ENU * Pos_NED;
497 Vector Vel_ENU = NED_to_ENU * Vel_NED;
498 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
499
500 // Call ENU version
501 Vector g_ENU;
502 Vector rho_ENU;
503 Vector omega_earth_ENU;
504 Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
505
506 // Convert output to NED
507 g_NED = ENU_to_NED * g_ENU;
508 rho_NED = ENU_to_NED * rho_ENU;
509 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
510 }
511
512 static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
513 Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
514 double R0 = 6.378388e6;
515 double e = 1/297;
516 double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
517
518 // Calculate current lat, lon
519 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
520 double delta_lat(delta_Pos_ENU(1)/Re);
521 double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
522 double lat_new(LatLonHeight_IC(0) + delta_lat);
523 double lon_new(LatLonHeight_IC(1) + delta_lon);
524
525 // Rotation of lon about z axis
526 Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
527 -sin(lon_new), cos(lon_new), 0.0,
528 0.0, 0.0, 1.0);
529
530 // Rotation of lat about y axis
531 Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
532 0.0, 1.0, 0.0,
533 -sin(lat_new), 0.0, cos(lat_new));
534
535 Rot3 UEN_to_ENU(0, 1, 0,
536 0, 0, 1,
537 1, 0, 0);
538
539 Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
540
541 Vector omega_earth_ECEF((Vector(3) << 0.0, 0.0, 7.292115e-5));
542 omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
543
544 // Calculating g
545 double height(LatLonHeight_IC(2));
546 double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84
547 double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid
548 double e2( pow(ECCENTRICITY,2) );
549 double den( 1-e2*pow(sin(lat_new),2) );
550 double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
551 double Rp( EQUA_RADIUS/( sqrt(den) ) );
552 double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
553 double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
554 double g_calc( g0/( pow(1 + height/Ro, 2) ) );
555 g_ENU = (Vector(3) << 0.0, 0.0, -g_calc);
556
557
558 // Calculate rho
559 double Ve( Vel_ENU(0) );
560 double Vn( Vel_ENU(1) );
561 double rho_E = -Vn/(Rm + height);
562 double rho_N = Ve/(Rp + height);
563 double rho_U = Ve*tan(lat_new)/(Rp + height);
564 rho_ENU = (Vector(3) << rho_E, rho_N, rho_U);
565 }
566
567 static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
568 /* Q_d (approx)= Q * delta_t */
569 /* In practice, square root of the information matrix is represented, so that:
570 * R_d (approx)= R / sqrt(delta_t)
571 * */
572 return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t));
573 }
574private:
575
578 template<class ARCHIVE>
579 void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
580 ar & boost::serialization::make_nvp("NonlinearFactor2",
581 boost::serialization::base_object<Base>(*this));
582 }
583
584
585
586}; // \class EquivInertialNavFactor_GlobalVel_NoBias
587
588}
typedef and functions to augment Eigen's MatrixXd
Some functions to compute numerical derivatives.
T inverse(const T &t)
unary functions
Definition: lieProxies.h:43
3D rotation represented as a rotation matrix or quaternion
Non-linear factor base classes.
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
Matrix stack(size_t nrMatrices,...)
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:396
Matrix3 skewSymmetric(double wx, double wy, double wz)
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0
Definition: Matrix.h:404
Matrix collect(const std::vector< const Matrix * > &matrices, size_t m, size_t n)
create a matrix by concatenating Given a set of matrices: A1, A2, A3... If all matrices have the same...
Definition: Matrix.cpp:442
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:69
Vector concatVectors(const std::list< Vector > &vs)
concatenate Vectors
Definition: Vector.cpp:302
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
Definition: Pose2.h:36
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H=boost::none)
Log map at identity - returns the canonical coordinates of this rotation.
Definition: Rot3M.cpp:158
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H=boost::none)
Exponential map at identity - create a rotation from canonical coordinates using Rodrigues' formula.
Definition: Rot3.h:377
This is the base class for all factor types.
Definition: Factor.h:56
bool equals(const This &other, double tol=1e-9) const
check equality
Definition: Factor.cpp:42
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
A Gaussian noise model created by specifying a covariance matrix.
Definition: NoiseModel.cpp:116
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
A Gaussian noise model created by specifying a square root information matrix.
Definition: NoiseModel.cpp:85
Nonlinear factor base class.
Definition: NonlinearFactor.h:43
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
Check if two factors are equal.
Definition: NonlinearFactor.cpp:71
A convenient base class for creating your own NoiseModelFactor with 4 variables.
Definition: NonlinearFactor.h:521
Key key1() const
methods to retrieve keys
Definition: NonlinearFactor.h:557
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:90
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
equals
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:156
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const POSE &Pose2, const VELOCITY &Vel2, boost::optional< Matrix & > H1=boost::none, boost::optional< Matrix & > H2=boost::none, boost::optional< Matrix & > H3=boost::none, boost::optional< Matrix & > H4=boost::none) const
Override this method to finish implementing a 4-way factor.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:272
virtual void print(const std::string &s="EquivInertialNavFactor_GlobalVel_NoBias", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
implement functions needed for Testable
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:135
EquivInertialNavFactor_GlobalVel_NoBias()
default constructor - only use for serialization
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:116
friend class boost::serialization::access
Serialization function.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:577
EquivInertialNavFactor_GlobalVel_NoBias(const Key &Pose1, const Key &Vel1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, boost::optional< POSE > body_P_sensor=boost::none)
Constructor.
Definition: EquivInertialNavFactor_GlobalVel_NoBias.h:119