gtsam 4.1.1
gtsam
EquivInertialNavFactor_GlobalVel.h
Go to the documentation of this file.
1
2/* ----------------------------------------------------------------------------
3
4 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
5 * Atlanta, Georgia 30332-0415
6 * All Rights Reserved
7 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
8
9 * See LICENSE for the license information
10
11 * -------------------------------------------------------------------------- */
12
20#pragma once
21
24#include <gtsam/geometry/Rot3.h>
25#include <gtsam/base/Matrix.h>
26
27// Using numerical derivative to calculate d(Pose3::Expmap)/dw
29
30#include <boost/bind/bind.hpp>
31#include <boost/optional.hpp>
32
33#include <ostream>
34
35namespace gtsam {
36
37/*
38 * NOTES:
39 * =====
40 * Concept: Based on [Lupton12tro]
41 * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations.
42 * Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began).
43 * All sensor-to-body transformations are performed here.
44 * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial.
45 * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel factor, which will
46 * relate between navigation variables at the two time instances (t0 and current time).
47 *
48 * Other notes:
49 * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
50 * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
51 * - Camera and IMU frames are identical
52 * - The user should specify a continuous equivalent noise covariance, which can be calculated using
53 * the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
54 * matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
55 * discrete form using the supplied delta_t between sub-sequential measurements.
56 * - Earth-rate correction:
57 * + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
58 * frame (Local-Level system: ENU or NED, see above).
59 * + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
60 * + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
61 * Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
62 *
63 * - Frame Notation:
64 * Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
65 * So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
66 * And the transformation from the body frame to the world frame would be: world_P_body
67 * This allows visual chaining. For example, converting the sensed angular velocity of the IMU
68 * (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
69 * world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
70 *
71 *
72 * - Common Quantity Types
73 * P : pose/3d transformation
74 * R : rotation
75 * omega : angular velocity
76 * t : translation
77 * v : velocity
78 * a : acceleration
79 *
80 * - Common Frames
81 * sensor : the coordinate system attached to the sensor origin
82 * body : the coordinate system attached to body/inertial frame.
83 * Unless an optional frame transformation is provided, the
84 * sensor frame and the body frame will be identical
85 * world : the global/world coordinate frame. This is assumed to be
86 * a tangent plane to the earth's surface somewhere near the
87 * vehicle
88 */
89
90template<class POSE, class VELOCITY, class IMUBIAS>
91class EquivInertialNavFactor_GlobalVel : public NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> {
92
93private:
94
97
98 Vector delta_pos_in_t0_;
99 Vector delta_vel_in_t0_;
100 Vector3 delta_angles_;
101 double dt12_;
102
103 Vector world_g_;
104 Vector world_rho_;
105 Vector world_omega_earth_;
106
107 Matrix Jacobian_wrt_t0_Overall_;
108
109 boost::optional<IMUBIAS> Bias_initial_; // Bias used when pre-integrating IMU measurements
110 boost::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
111
112public:
113
114 // shorthand for a smart pointer to a factor
115 typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel> shared_ptr;
116
119
121 EquivInertialNavFactor_GlobalVel(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2,
122 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
123 double dt12, const Vector world_g, const Vector world_rho,
124 const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent,
125 const Matrix& Jacobian_wrt_t0_Overall,
126 boost::optional<IMUBIAS> Bias_initial = boost::none, boost::optional<POSE> body_P_sensor = boost::none) :
127 Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2),
128 delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
129 dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall),
130 Bias_initial_(Bias_initial), body_P_sensor_(body_P_sensor) { }
131
133
137 void print(const std::string& s = "EquivInertialNavFactor_GlobalVel", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
138 std::cout << s << "("
139 << keyFormatter(this->key1()) << ","
140 << keyFormatter(this->key2()) << ","
141 << keyFormatter(this->key3()) << ","
142 << keyFormatter(this->key4()) << ","
143 << keyFormatter(this->key5()) << "\n";
144 std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
145 std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
146 std::cout << "delta_angles: " << this->delta_angles_ << std::endl;
147 std::cout << "dt12: " << this->dt12_ << std::endl;
148 std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
149 std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
150 std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
151 if(this->body_P_sensor_)
152 this->body_P_sensor_->print(" sensor pose in body frame: ");
153 this->noiseModel_->print(" noise model");
154 }
155
157 bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
158 const This *e = dynamic_cast<const This*> (&expected);
159 return e != nullptr && Base::equals(*e, tol)
160 && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
161 && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
162 && (delta_angles_ - e->delta_angles_).norm() < tol
163 && (dt12_ - e->dt12_) < tol
164 && (world_g_ - e->world_g_).norm() < tol
165 && (world_rho_ - e->world_rho_).norm() < tol
166 && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
167 && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
168 }
169
170
171 POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
172
173 // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
174 Vector delta_BiasAcc = Bias1.accelerometer();
175 Vector delta_BiasGyro = Bias1.gyroscope();
176 if (Bias_initial_){
177 delta_BiasAcc -= Bias_initial_->accelerometer();
178 delta_BiasGyro -= Bias_initial_->gyroscope();
179 }
180
181 Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(4,9,3,3);
182 Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(4,12,3,3);
183 Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(0,12,3,3);
184
185 /* Position term */
186 Vector delta_pos_in_t0_corrected = delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
187
188 /* Rotation term */
189 Vector delta_angles_corrected = delta_angles_ + J_angles_wrt_BiasGyro*delta_BiasGyro;
190 // Another alternative:
191 // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
192
193 return predictPose_inertial(Pose1, Vel1,
194 delta_pos_in_t0_corrected, delta_angles_corrected,
195 dt12_, world_g_, world_rho_, world_omega_earth_);
196 }
197
198 static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1,
199 const Vector& delta_pos_in_t0, const Vector3& delta_angles,
200 const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){
201
202 const POSE& world_P1_body = Pose1;
203 const VELOCITY& world_V1_body = Vel1;
204
205 /* Position term */
206 Vector body_deltaPos_body = delta_pos_in_t0;
207
208 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
209 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
210
211 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
212 world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
213
214 /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
215 * the gravity should be canceled from the accelerometer measurements, bust since position
216 * is added with a delta velocity from a previous term, the actual delta time is more complicated.
217 * Need to figure out this in the future - currently because of this issue we'll get some more error
218 * in Z axis.
219 */
220
221 /* Rotation term */
222 Vector body_deltaAngles_body = delta_angles;
223
224 // Convert earth-related terms into the body frame
225 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
226 Vector body_rho = body_R_world * world_rho;
227 Vector body_omega_earth = body_R_world * world_omega_earth;
228
229 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
230 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
231
232 return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body));
233
234 }
235
236 VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
237
238 // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
239 Vector delta_BiasAcc = Bias1.accelerometer();
240 Vector delta_BiasGyro = Bias1.gyroscope();
241 if (Bias_initial_){
242 delta_BiasAcc -= Bias_initial_->accelerometer();
243 delta_BiasGyro -= Bias_initial_->gyroscope();
244 }
245
246 Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(6,9,3,3);
247 Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(6,12,3,3);
248
249 Vector delta_vel_in_t0_corrected = delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
250
251 return predictVelocity_inertial(Pose1, Vel1,
252 delta_vel_in_t0_corrected,
253 dt12_, world_g_, world_rho_, world_omega_earth_);
254 }
255
256 static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1,
257 const Vector& delta_vel_in_t0,
258 const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) {
259
260 const POSE& world_P1_body = Pose1;
261 const VELOCITY& world_V1_body = Vel1;
262
263 Vector body_deltaVel_body = delta_vel_in_t0;
264 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
265
266 VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
267
268 // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
269 VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
270
271 // Predict
272 return Vel1 + VelDelta;
273
274 }
275
276 void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const {
277 Pose2 = predictPose(Pose1, Vel1, Bias1);
278 Vel2 = predictVelocity(Pose1, Vel1, Bias1);
279 }
280
281 POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
282 // Predict
283 POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
284
285 // Luca: difference between Pose2 and Pose2Pred
286 POSE DiffPose( Pose2.rotation().between(Pose2Pred.rotation()), Pose2Pred.translation() - Pose2.translation() );
287// DiffPose = Pose2.between(Pose2Pred);
288 return DiffPose;
289 // Calculate error
290 //return Pose2.between(Pose2Pred);
291 }
292
293 VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
294 // Predict
295 VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
296
297 // Calculate error
298 return Vel2Pred-Vel2;
299 }
300
301 Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2,
302 boost::optional<Matrix&> H1 = boost::none,
303 boost::optional<Matrix&> H2 = boost::none,
304 boost::optional<Matrix&> H3 = boost::none,
305 boost::optional<Matrix&> H4 = boost::none,
306 boost::optional<Matrix&> H5 = boost::none) const override {
307
308 // TODO: Write analytical derivative calculations
309 // Jacobian w.r.t. Pose1
310 if (H1){
311 Matrix H1_Pose = numericalDerivative11<POSE, POSE>(
312 std::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
313 this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
314 Pose1);
315 Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(
316 std::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
317 this, std::placeholders::_1, Vel1, Bias1, Pose2, Vel2),
318 Pose1);
319 *H1 = stack(2, &H1_Pose, &H1_Vel);
320 }
321
322 // Jacobian w.r.t. Vel1
323 if (H2){
324 if (Vel1.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
325 Matrix H2_Pose = numericalDerivative11<POSE, Vector3>(
326 std::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
327 this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
328 Vel1);
329 Matrix H2_Vel = numericalDerivative11<Vector3, Vector3>(
330 std::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
331 this, Pose1, std::placeholders::_1, Bias1, Pose2, Vel2),
332 Vel1);
333 *H2 = stack(2, &H2_Pose, &H2_Vel);
334 }
335
336 // Jacobian w.r.t. IMUBias1
337 if (H3){
338 Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(
339 std::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
340 this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
341 Bias1);
342 Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(
343 std::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
344 this, Pose1, Vel1, std::placeholders::_1, Pose2, Vel2),
345 Bias1);
346 *H3 = stack(2, &H3_Pose, &H3_Vel);
347 }
348
349 // Jacobian w.r.t. Pose2
350 if (H4){
351 Matrix H4_Pose = numericalDerivative11<POSE, POSE>(
352 std::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
353 this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
354 Pose2);
355 Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(
356 std::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
357 this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
358 Pose2);
359 *H4 = stack(2, &H4_Pose, &H4_Vel);
360 }
361
362 // Jacobian w.r.t. Vel2
363 if (H5){
364 if (Vel2.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3");
365 Matrix H5_Pose = numericalDerivative11<POSE, Vector3>(
366 std::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError,
367 this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
368 Vel2);
369 Matrix H5_Vel = numericalDerivative11<Vector3, Vector3>(
370 std::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError,
371 this, Pose1, Vel1, Bias1, Pose2, std::placeholders::_1),
372 Vel2);
373 *H5 = stack(2, &H5_Pose, &H5_Vel);
374 }
375
376 Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2)));
377 Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2));
378
379 return concatVectors(2, &ErrPoseVector, &ErrVelVector);
380 }
381
382
383
384 static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1,
385 const Vector& delta_pos_in_t0, const Vector3& delta_angles,
386 double dt12, const Vector world_g, const Vector world_rho,
387 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
388 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
389
390
391 // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
392 Vector delta_BiasAcc = Bias1.accelerometer();
393 Vector delta_BiasGyro = Bias1.gyroscope();
394 if (Bias_initial){
395 delta_BiasAcc -= Bias_initial->accelerometer();
396 delta_BiasGyro -= Bias_initial->gyroscope();
397 }
398
399 Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(4,9,3,3);
400 Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3);
401 Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3);
402
403 /* Position term */
404 Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
405
406 /* Rotation term */
407 Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro;
408 // Another alternative:
409 // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
410
411 return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
412 }
413
414 static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1,
415 const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho,
416 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
417 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
418
419 // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
420 Vector delta_BiasAcc = Bias1.accelerometer();
421 Vector delta_BiasGyro = Bias1.gyroscope();
422 if (Bias_initial){
423 delta_BiasAcc -= Bias_initial->accelerometer();
424 delta_BiasGyro -= Bias_initial->gyroscope();
425 }
426
427 Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(6,9,3,3);
428 Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3);
429
430 Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
431
432 return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
433 }
434
435 static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2,
436 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
437 double dt12, const Vector world_g, const Vector world_rho,
438 const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall,
439 const boost::optional<IMUBIAS>& Bias_initial = boost::none) {
440
441 Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
442 Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, Bias1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
443 }
444
445
446 static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt,
447 Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t,
448 const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
449 Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall, const IMUBIAS Bias_t0 = IMUBIAS(),
450 boost::optional<POSE> p_body_P_sensor = boost::none){
451 // Note: all delta terms refer to an IMU\sensor system at t0
452 // Note: Earth-related terms are not accounted here but are incorporated in predict functions.
453
454 POSE body_P_sensor = POSE();
455 bool flag_use_body_P_sensor = false;
456 if (p_body_P_sensor){
457 body_P_sensor = *p_body_P_sensor;
458 flag_use_body_P_sensor = true;
459 }
460
461 delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
462 delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
463 delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, Bias_t0);
464
465 delta_t += msr_dt;
466
467 // Update EquivCov_Overall
468 Matrix Z_3x3 = Z_3x3;
469 Matrix I_3x3 = I_3x3;
470
471 Matrix H_pos_pos = numericalDerivative11<Vector3, Vector3>(
472 std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt,
473 std::placeholders::_1, delta_vel_in_t0),
474 delta_pos_in_t0);
475 Matrix H_pos_vel = numericalDerivative11<Vector3, Vector3>(
476 std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt,
477 delta_pos_in_t0, std::placeholders::_1),
478 delta_vel_in_t0);
479 Matrix H_pos_angles = Z_3x3;
480 Matrix H_pos_bias = collect(2, &Z_3x3, &Z_3x3);
481
482 Matrix H_vel_vel = numericalDerivative11<Vector3, Vector3>(
483 std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
484 msr_acc_t, msr_dt, delta_angles, std::placeholders::_1,
485 flag_use_body_P_sensor, body_P_sensor, Bias_t0),
486 delta_vel_in_t0);
487 Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(
488 std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
489 msr_acc_t, msr_dt, std::placeholders::_1, delta_vel_in_t0,
490 flag_use_body_P_sensor, body_P_sensor, Bias_t0),
491 delta_angles);
492 Matrix H_vel_bias = numericalDerivative11<Vector3, IMUBIAS>(
493 std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t,
494 msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0,
495 flag_use_body_P_sensor, body_P_sensor,
496 std::placeholders::_1),
497 Bias_t0);
498 Matrix H_vel_pos = Z_3x3;
499
500 Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(
501 std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t,
502 msr_dt, std::placeholders::_1, flag_use_body_P_sensor,
503 body_P_sensor, Bias_t0),
504 delta_angles);
505 Matrix H_angles_bias = numericalDerivative11<Vector3, IMUBIAS>(
506 std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t,
507 msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor,
508 std::placeholders::_1),
509 Bias_t0);
510 Matrix H_angles_pos = Z_3x3;
511 Matrix H_angles_vel = Z_3x3;
512
513 Matrix F_angles = collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias);
514 Matrix F_pos = collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias);
515 Matrix F_vel = collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias);
516 Matrix F_bias_a = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3);
517 Matrix F_bias_g = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3);
518 Matrix F = stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g);
519
520
521 noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
522 Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).inverse();
523
524 EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
525 // Luca: force identity covariance matrix (for testing purposes)
526 // EquivCov_Overall = Matrix::Identity(15,15);
527
528 // Update Jacobian_wrt_t0_Overall
529 Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
530 }
531
532 static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt,
533 const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){
534
535 // Note: all delta terms refer to an IMU\sensor system at t0
536 // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
537
538 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
539 }
540
541
542
543 static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
544 const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor,
545 IMUBIAS Bias_t0 = IMUBIAS()){
546
547 // Note: all delta terms refer to an IMU\sensor system at t0
548
549 // Calculate the corrected measurements using the Bias object
550 Vector AccCorrected = Bias_t0.correctAccelerometer(msr_acc_t);
551 Vector body_t_a_body;
552 if (flag_use_body_P_sensor){
553 Matrix body_R_sensor = body_P_sensor.rotation().matrix();
554
555 Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t));
556
557 Vector body_omega_body = body_R_sensor * GyroCorrected;
558 Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
559
560 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
561 } else{
562 body_t_a_body = AccCorrected;
563 }
564
565 Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
566
567 return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
568 }
569
570
571 static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
572 const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor,
573 IMUBIAS Bias_t0 = IMUBIAS()){
574
575 // Note: all delta terms refer to an IMU\sensor system at t0
576
577 // Calculate the corrected measurements using the Bias object
578 Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t);
579
580 Vector body_t_omega_body;
581 if (flag_use_body_P_sensor){
582 body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
583 } else {
584 body_t_omega_body = GyroCorrected;
585 }
586
587 Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
588
589 R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
590 return Rot3::Logmap(R_t_to_t0);
591 }
592
593
594 static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
595 const noiseModel::Gaussian::shared_ptr& gaussian_process){
596
597 Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
598 Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
599 Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
600
601 cov_process.block(0,0, 3,3) += cov_gyro;
602 cov_process.block(6,6, 3,3) += cov_acc;
603
604 return noiseModel::Gaussian::Covariance(cov_process);
605 }
606
607 static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
608 const noiseModel::Gaussian::shared_ptr& gaussian_process,
609 Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
610
611 cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse();
612 cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse();
613 cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse();
614 }
615
616 static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
617 Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
618
619 Matrix ENU_to_NED = (Matrix(3, 3) <<
620 0.0, 1.0, 0.0,
621 1.0, 0.0, 0.0,
622 0.0, 0.0, -1.0).finished();
623
624 Matrix NED_to_ENU = (Matrix(3, 3) <<
625 0.0, 1.0, 0.0,
626 1.0, 0.0, 0.0,
627 0.0, 0.0, -1.0).finished();
628
629 // Convert incoming parameters to ENU
630 Vector Pos_ENU = NED_to_ENU * Pos_NED;
631 Vector Vel_ENU = NED_to_ENU * Vel_NED;
632 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
633
634 // Call ENU version
635 Vector g_ENU;
636 Vector rho_ENU;
637 Vector omega_earth_ENU;
638 Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
639
640 // Convert output to NED
641 g_NED = ENU_to_NED * g_ENU;
642 rho_NED = ENU_to_NED * rho_ENU;
643 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
644 }
645
646 static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
647 Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
648 double R0 = 6.378388e6;
649 double e = 1/297;
650 double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
651
652 // Calculate current lat, lon
653 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
654 double delta_lat(delta_Pos_ENU(1)/Re);
655 double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
656 double lat_new(LatLonHeight_IC(0) + delta_lat);
657 double lon_new(LatLonHeight_IC(1) + delta_lon);
658
659 // Rotation of lon about z axis
660 Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
661 -sin(lon_new), cos(lon_new), 0.0,
662 0.0, 0.0, 1.0);
663
664 // Rotation of lat about y axis
665 Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
666 0.0, 1.0, 0.0,
667 -sin(lat_new), 0.0, cos(lat_new));
668
669 Rot3 UEN_to_ENU(0, 1, 0,
670 0, 0, 1,
671 1, 0, 0);
672
673 Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
674
675 Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5));
676 omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
677
678 // Calculating g
679 double height(LatLonHeight_IC(2));
680 double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84
681 double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid
682 double e2( pow(ECCENTRICITY,2) );
683 double den( 1-e2*pow(sin(lat_new),2) );
684 double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
685 double Rp( EQUA_RADIUS/( sqrt(den) ) );
686 double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
687 double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
688 double g_calc( g0/( pow(1 + height/Ro, 2) ) );
689 g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished();
690
691
692 // Calculate rho
693 double Ve( Vel_ENU(0) );
694 double Vn( Vel_ENU(1) );
695 double rho_E = -Vn/(Rm + height);
696 double rho_N = Ve/(Rp + height);
697 double rho_U = Ve*tan(lat_new)/(Rp + height);
698 rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished();
699 }
700
701 static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
702 /* Q_d (approx)= Q * delta_t */
703 /* In practice, square root of the information matrix is represented, so that:
704 * R_d (approx)= R / sqrt(delta_t)
705 * */
706 return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t));
707 }
708private:
709
712 template<class ARCHIVE>
713 void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
714 ar & boost::serialization::make_nvp("NonlinearFactor2",
715 boost::serialization::base_object<Base>(*this));
716 }
717
718
719
720}; // \class EquivInertialNavFactor_GlobalVel
721
722}
typedef and functions to augment Eigen's MatrixXd
Some functions to compute numerical derivatives.
T inverse(const T &t)
unary functions
Definition: lieProxies.h:43
3D rotation represented as a rotation matrix or quaternion
Non-linear factor base classes.
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
Matrix stack(size_t nrMatrices,...)
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:396
Matrix3 skewSymmetric(double wx, double wy, double wz)
skew symmetric matrix returns this: 0 -wz wy wz 0 -wx -wy wx 0
Definition: Matrix.h:404
Matrix collect(const std::vector< const Matrix * > &matrices, size_t m, size_t n)
create a matrix by concatenating Given a set of matrices: A1, A2, A3... If all matrices have the same...
Definition: Matrix.cpp:442
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:69
Vector concatVectors(const std::list< Vector > &vs)
concatenate Vectors
Definition: Vector.cpp:302
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
Definition: Pose2.h:36
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H=boost::none)
Log map at identity - returns the canonical coordinates of this rotation.
Definition: Rot3M.cpp:158
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H=boost::none)
Exponential map at identity - create a rotation from canonical coordinates using Rodrigues' formula.
Definition: Rot3.h:377
This is the base class for all factor types.
Definition: Factor.h:56
bool equals(const This &other, double tol=1e-9) const
check equality
Definition: Factor.cpp:42
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
A Gaussian noise model created by specifying a covariance matrix.
Definition: NoiseModel.cpp:116
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
A Gaussian noise model created by specifying a square root information matrix.
Definition: NoiseModel.cpp:85
Nonlinear factor base class.
Definition: NonlinearFactor.h:43
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
Check if two factors are equal.
Definition: NonlinearFactor.cpp:71
A convenient base class for creating your own NoiseModelFactor with 5 variables.
Definition: NonlinearFactor.h:602
Key key1() const
methods to retrieve keys
Definition: NonlinearFactor.h:640
Definition: EquivInertialNavFactor_GlobalVel.h:91
void print(const std::string &s="EquivInertialNavFactor_GlobalVel", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
implement functions needed for Testable
Definition: EquivInertialNavFactor_GlobalVel.h:137
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const IMUBIAS &Bias1, const POSE &Pose2, const VELOCITY &Vel2, boost::optional< Matrix & > H1=boost::none, boost::optional< Matrix & > H2=boost::none, boost::optional< Matrix & > H3=boost::none, boost::optional< Matrix & > H4=boost::none, boost::optional< Matrix & > H5=boost::none) const override
Override this method to finish implementing a 5-way factor.
Definition: EquivInertialNavFactor_GlobalVel.h:301
EquivInertialNavFactor_GlobalVel(const Key &Pose1, const Key &Vel1, const Key &IMUBias1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, boost::optional< IMUBIAS > Bias_initial=boost::none, boost::optional< POSE > body_P_sensor=boost::none)
Constructor.
Definition: EquivInertialNavFactor_GlobalVel.h:121
friend class boost::serialization::access
Serialization function.
Definition: EquivInertialNavFactor_GlobalVel.h:711
EquivInertialNavFactor_GlobalVel()
default constructor - only use for serialization
Definition: EquivInertialNavFactor_GlobalVel.h:118
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
equals
Definition: EquivInertialNavFactor_GlobalVel.h:157