gtsam 4.1.1
gtsam
BetweenFactorEM.h
Go to the documentation of this file.
1/* ----------------------------------------------------------------------------
2
3 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4 * Atlanta, Georgia 30332-0415
5 * All Rights Reserved
6 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7
8 * See LICENSE for the license information
9
10 * -------------------------------------------------------------------------- */
11
16#pragma once
17
18#include <ostream>
19
20#include <gtsam/base/Testable.h>
21#include <gtsam/base/Lie.h>
25
26namespace gtsam {
27
33template<class VALUE>
35
36public:
37
38 typedef VALUE T;
39
40private:
41
43 typedef NonlinearFactor Base;
44
45 Key key1_;
46 Key key2_;
47
48 VALUE measured_;
50 SharedGaussian model_inlier_;
51 SharedGaussian model_outlier_;
52
53 double prior_inlier_;
54 double prior_outlier_;
55
56 bool flag_bump_up_near_zero_probs_;
57
59 GTSAM_CONCEPT_LIE_TYPE(T)
60 GTSAM_CONCEPT_TESTABLE_TYPE(T)
61
62public:
63
64 // shorthand for a smart pointer to a factor
65 typedef typename boost::shared_ptr<BetweenFactorEM> shared_ptr;
66
69 }
70
72 BetweenFactorEM(Key key1, Key key2, const VALUE& measured,
73 const SharedGaussian& model_inlier, const SharedGaussian& model_outlier,
74 const double prior_inlier, const double prior_outlier,
75 const bool flag_bump_up_near_zero_probs = false) :
76 Base(cref_list_of<2>(key1)(key2)), key1_(key1), key2_(key2), measured_(
77 measured), model_inlier_(model_inlier), model_outlier_(model_outlier), prior_inlier_(
78 prior_inlier), prior_outlier_(prior_outlier), flag_bump_up_near_zero_probs_(
79 flag_bump_up_near_zero_probs) {
80 }
81
82 ~BetweenFactorEM() override {
83 }
84
88 void print(const std::string& s, const KeyFormatter& keyFormatter =
89 DefaultKeyFormatter) const override {
90 std::cout << s << "BetweenFactorEM(" << keyFormatter(key1_) << ","
91 << keyFormatter(key2_) << ")\n";
92 measured_.print(" measured: ");
93 model_inlier_->print(" noise model inlier: ");
94 model_outlier_->print(" noise model outlier: ");
95 std::cout << "(prior_inlier, prior_outlier_) = (" << prior_inlier_ << ","
96 << prior_outlier_ << ")\n";
97 // Base::print(s, keyFormatter);
98 }
99
101 bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
102 const This *t = dynamic_cast<const This*>(&f);
103
104 if (t && Base::equals(f))
105 return key1_ == t->key1_ && key2_ == t->key2_
106 &&
107 // model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here
108 // model_outlier_->equals(t->model_outlier_ ) &&
109 prior_outlier_ == t->prior_outlier_
110 && prior_inlier_ == t->prior_inlier_ && measured_.equals(t->measured_);
111 else
112 return false;
113 }
114
117 /* ************************************************************************* */
118 double error(const Values &x) const override {
119 return whitenedError(x).squaredNorm();
120 }
121
122 /* ************************************************************************* */
128 /* This version of linearize recalculates the noise model each time */
129 boost::shared_ptr<GaussianFactor> linearize(const Values &x) const override {
130 // Only linearize if the factor is active
131 if (!this->active(x))
132 return boost::shared_ptr<JacobianFactor>();
133
134 //std::cout<<"About to linearize"<<std::endl;
135 Matrix A1, A2;
136 std::vector<Matrix> A(this->size());
137 Vector b = -whitenedError(x, A);
138 A1 = A[0];
139 A2 = A[1];
140
142 new JacobianFactor(key1_, A1, key2_, A2, b,
143 noiseModel::Unit::Create(b.size())));
144 }
145
146 /* ************************************************************************* */
147 Vector whitenedError(const Values& x,
148 boost::optional<std::vector<Matrix>&> H = boost::none) const {
149
150 bool debug = true;
151
152 const T& p1 = x.at<T>(key1_);
153 const T& p2 = x.at<T>(key2_);
154
155 Matrix H1, H2;
156
157 T hx = p1.between(p2, H1, H2); // h(x)
158 // manifold equivalent of h(x)-z -> log(z,h(x))
159
160 Vector err = measured_.localCoordinates(hx);
161
162 // Calculate indicator probabilities (inlier and outlier)
163 Vector p_inlier_outlier = calcIndicatorProb(x);
164 double p_inlier = p_inlier_outlier[0];
165 double p_outlier = p_inlier_outlier[1];
166
167 Vector err_wh_inlier = model_inlier_->whiten(err);
168 Vector err_wh_outlier = model_outlier_->whiten(err);
169
170 Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R();
171 Matrix invCov_outlier = model_outlier_->R().transpose()
172 * model_outlier_->R();
173
174 Vector err_wh_eq;
175 err_wh_eq.resize(err_wh_inlier.rows() * 2);
176 err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array(), sqrt(p_outlier)
177 * err_wh_outlier.array();
178
179 if (H) {
180 // stack Jacobians for the two indicators for each of the key
181
182 Matrix H1_inlier = sqrt(p_inlier) * model_inlier_->Whiten(H1);
183 Matrix H1_outlier = sqrt(p_outlier) * model_outlier_->Whiten(H1);
184 Matrix H1_aug = stack(2, &H1_inlier, &H1_outlier);
185
186 Matrix H2_inlier = sqrt(p_inlier) * model_inlier_->Whiten(H2);
187 Matrix H2_outlier = sqrt(p_outlier) * model_outlier_->Whiten(H2);
188 Matrix H2_aug = stack(2, &H2_inlier, &H2_outlier);
189
190 (*H)[0].resize(H1_aug.rows(), H1_aug.cols());
191 (*H)[1].resize(H2_aug.rows(), H2_aug.cols());
192
193 (*H)[0] = H1_aug;
194 (*H)[1] = H2_aug;
195 }
196
197 if (debug) {
198 // std::cout<<"unwhitened error: "<<err[0]<<" "<<err[1]<<" "<<err[2]<<std::endl;
199 // std::cout<<"err_wh_inlier: "<<err_wh_inlier[0]<<" "<<err_wh_inlier[1]<<" "<<err_wh_inlier[2]<<std::endl;
200 // std::cout<<"err_wh_outlier: "<<err_wh_outlier[0]<<" "<<err_wh_outlier[1]<<" "<<err_wh_outlier[2]<<std::endl;
201 //
202 // std::cout<<"p_inlier, p_outlier, sumP: "<<p_inlier<<" "<<p_outlier<<" " << sumP << std::endl;
203 //
204 // std::cout<<"prior_inlier_, prior_outlier_: "<<prior_inlier_<<" "<<prior_outlier_<< std::endl;
205 //
206 // double s_inl = -0.5 * err_wh_inlier.dot(err_wh_inlier);
207 // double s_outl = -0.5 * err_wh_outlier.dot(err_wh_outlier);
208 // std::cout<<"s_inl, s_outl: "<<s_inl<<" "<<s_outl<<std::endl;
209 //
210 // std::cout<<"norm of invCov_inlier, invCov_outlier: "<<invCov_inlier.norm()<<" "<<invCov_outlier.norm()<<std::endl;
211 // double q_inl = invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) );
212 // double q_outl = invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) );
213 // std::cout<<"q_inl, q_outl: "<<q_inl<<" "<<q_outl<<std::endl;
214
215 // Matrix Cov_inlier = invCov_inlier.inverse();
216 // Matrix Cov_outlier = invCov_outlier.inverse();
217 // std::cout<<"Cov_inlier: "<<std::endl<<
218 // Cov_inlier(0,0) << " " << Cov_inlier(0,1) << " " << Cov_inlier(0,2) <<std::endl<<
219 // Cov_inlier(1,0) << " " << Cov_inlier(1,1) << " " << Cov_inlier(1,2) <<std::endl<<
220 // Cov_inlier(2,0) << " " << Cov_inlier(2,1) << " " << Cov_inlier(2,2) <<std::endl;
221 // std::cout<<"Cov_outlier: "<<std::endl<<
222 // Cov_outlier(0,0) << " " << Cov_outlier(0,1) << " " << Cov_outlier(0,2) <<std::endl<<
223 // Cov_outlier(1,0) << " " << Cov_outlier(1,1) << " " << Cov_outlier(1,2) <<std::endl<<
224 // Cov_outlier(2,0) << " " << Cov_outlier(2,1) << " " << Cov_outlier(2,2) <<std::endl;
225 // std::cout<<"===="<<std::endl;
226 }
227
228 return err_wh_eq;
229 }
230
231 /* ************************************************************************* */
232 Vector calcIndicatorProb(const Values& x) const {
233
234 bool debug = false;
235
236 Vector err = unwhitenedError(x);
237
238 // Calculate indicator probabilities (inlier and outlier)
239 Vector err_wh_inlier = model_inlier_->whiten(err);
240 Vector err_wh_outlier = model_outlier_->whiten(err);
241
242 Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R();
243 Matrix invCov_outlier = model_outlier_->R().transpose()
244 * model_outlier_->R();
245
246 double p_inlier = prior_inlier_ * std::sqrt(invCov_inlier.determinant())
247 * exp(-0.5 * err_wh_inlier.dot(err_wh_inlier));
248 double p_outlier = prior_outlier_ * std::sqrt(invCov_outlier.determinant())
249 * exp(-0.5 * err_wh_outlier.dot(err_wh_outlier));
250
251 if (debug) {
252 std::cout << "in calcIndicatorProb. err_unwh: " << err[0] << ", "
253 << err[1] << ", " << err[2] << std::endl;
254 std::cout << "in calcIndicatorProb. err_wh_inlier: " << err_wh_inlier[0]
255 << ", " << err_wh_inlier[1] << ", " << err_wh_inlier[2] << std::endl;
256 std::cout << "in calcIndicatorProb. err_wh_inlier.dot(err_wh_inlier): "
257 << err_wh_inlier.dot(err_wh_inlier) << std::endl;
258 std::cout << "in calcIndicatorProb. err_wh_outlier.dot(err_wh_outlier): "
259 << err_wh_outlier.dot(err_wh_outlier) << std::endl;
260
261 std::cout
262 << "in calcIndicatorProb. p_inlier, p_outlier before normalization: "
263 << p_inlier << ", " << p_outlier << std::endl;
264 }
265
266 double sumP = p_inlier + p_outlier;
267 p_inlier /= sumP;
268 p_outlier /= sumP;
269
270 if (flag_bump_up_near_zero_probs_) {
271 // Bump up near-zero probabilities (as in linerFlow.h)
272 double minP = 0.05; // == 0.1 / 2 indicator variables
273 if (p_inlier < minP || p_outlier < minP) {
274 if (p_inlier < minP)
275 p_inlier = minP;
276 if (p_outlier < minP)
277 p_outlier = minP;
278 sumP = p_inlier + p_outlier;
279 p_inlier /= sumP;
280 p_outlier /= sumP;
281 }
282 }
283
284 return (Vector(2) << p_inlier, p_outlier).finished();
285 }
286
287 /* ************************************************************************* */
288 Vector unwhitenedError(const Values& x) const {
289
290 const T& p1 = x.at<T>(key1_);
291 const T& p2 = x.at<T>(key2_);
292
293 Matrix H1, H2;
294
295 T hx = p1.between(p2, H1, H2); // h(x)
296
297 return measured_.localCoordinates(hx);
298 }
299
300 /* ************************************************************************* */
301 void set_flag_bump_up_near_zero_probs(bool flag) {
302 flag_bump_up_near_zero_probs_ = flag;
303 }
304
305 /* ************************************************************************* */
306 bool get_flag_bump_up_near_zero_probs() const {
307 return flag_bump_up_near_zero_probs_;
308 }
309
310 /* ************************************************************************* */
311 SharedGaussian get_model_inlier() const {
312 return model_inlier_;
313 }
314
315 /* ************************************************************************* */
316 SharedGaussian get_model_outlier() const {
317 return model_outlier_;
318 }
319
320 /* ************************************************************************* */
321 Matrix get_model_inlier_cov() const {
322 return (model_inlier_->R().transpose() * model_inlier_->R()).inverse();
323 }
324
325 /* ************************************************************************* */
326 Matrix get_model_outlier_cov() const {
327 return (model_outlier_->R().transpose() * model_outlier_->R()).inverse();
328 }
329
330 /* ************************************************************************* */
331 void updateNoiseModels(const Values& values,
332 const NonlinearFactorGraph& graph) {
333 /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
334 * (note these are given in the E step, where indicator probabilities are calculated).
335 *
336 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
337 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
338 *
339 * TODO: improve efficiency (info form)
340 */
341
342 // get joint covariance of the involved states
343 KeyVector Keys;
344 Keys.push_back(key1_);
345 Keys.push_back(key2_);
346 Marginals marginals(graph, values, Marginals::QR);
347 JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
348 Matrix cov1 = joint_marginal12(key1_, key1_);
349 Matrix cov2 = joint_marginal12(key2_, key2_);
350 Matrix cov12 = joint_marginal12(key1_, key2_);
351
352 updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
353 }
354
355 /* ************************************************************************* */
356 void updateNoiseModels_givenCovs(const Values& values,
357 const Matrix& cov1, const Matrix& cov2, const Matrix& cov12) {
358 /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
359 * (note these are given in the E step, where indicator probabilities are calculated).
360 *
361 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
362 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
363 *
364 * TODO: improve efficiency (info form)
365 */
366
367 const T& p1 = values.at<T>(key1_);
368 const T& p2 = values.at<T>(key2_);
369
370 Matrix H1, H2;
371 p1.between(p2, H1, H2); // h(x)
372
373 Matrix H;
374 H.resize(H1.rows(), H1.rows() + H2.rows());
375 H << H1, H2; // H = [H1 H2]
376
377 Matrix joint_cov;
378 joint_cov.resize(cov1.rows() + cov2.rows(), cov1.cols() + cov2.cols());
379 joint_cov << cov1, cov12, cov12.transpose(), cov2;
380
381 Matrix cov_state = H * joint_cov * H.transpose();
382
383 // model_inlier_->print("before:");
384
385 // update inlier and outlier noise models
386 Matrix covRinlier =
387 (model_inlier_->R().transpose() * model_inlier_->R()).inverse();
388 model_inlier_ = noiseModel::Gaussian::Covariance(
389 covRinlier + cov_state);
390
391 Matrix covRoutlier =
392 (model_outlier_->R().transpose() * model_outlier_->R()).inverse();
393 model_outlier_ = noiseModel::Gaussian::Covariance(
394 covRoutlier + cov_state);
395
396 // model_inlier_->print("after:");
397 // std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
398 }
399
400 /* ************************************************************************* */
402 const VALUE& measured() const {
403 return measured_;
404 }
405
406 size_t dim() const override {
407 return model_inlier_->R().rows() + model_inlier_->R().cols();
408 }
409
410private:
411
414 template<class ARCHIVE>
415 void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
416 ar
417 & boost::serialization::make_nvp("NonlinearFactor",
418 boost::serialization::base_object<Base>(*this));
419 ar & BOOST_SERIALIZATION_NVP(measured_);
420 }
421};
422// \class BetweenFactorEM
423
424} // namespace gtsam
Concept check for values that can be used in unit tests.
Base class and basic functions for Lie types.
T inverse(const T &t)
unary functions
Definition: lieProxies.h:43
A factor with a quadratic error function - a Gaussian.
A class for computing marginals in a NonlinearFactorGraph.
Non-linear factor base classes.
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
FastVector< Key > KeyVector
Define collection type once and for all - also used in wrappers.
Definition: Key.h:86
Matrix stack(size_t nrMatrices,...)
create a matrix by stacking other matrices Given a set of matrices: A1, A2, A3...
Definition: Matrix.cpp:396
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:69
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
This is the base class for all factor types.
Definition: Factor.h:56
bool equals(const This &other, double tol=1e-9) const
check equality
Definition: Factor.cpp:42
size_t size() const
Definition: Factor.h:136
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: GaussianFactor.h:42
A Gaussian factor in the squared-error form.
Definition: JacobianFactor.h:91
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
A Gaussian noise model created by specifying a covariance matrix.
Definition: NoiseModel.cpp:116
static shared_ptr Create(size_t dim)
Create a unit covariance noise model.
Definition: NoiseModel.h:611
Nonlinear factor base class.
Definition: NonlinearFactor.h:43
virtual bool equals(const NonlinearFactor &f, double tol=1e-9) const
Check if two factors are equal.
Definition: NonlinearFactor.cpp:36
virtual bool active(const Values &) const
Checks whether a factor should be used based on a set of values.
Definition: NonlinearFactor.h:106
A non-templated config holding any types of Manifold-group elements.
Definition: Values.h:63
const ValueType at(Key j) const
Retrieve a variable by key j.
Definition: Values-inl.h:346
Definition: BetweenFactorEM.h:34
void print(const std::string &s, const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
implement functions needed for Testable
Definition: BetweenFactorEM.h:88
const VALUE & measured() const
return the measured
Definition: BetweenFactorEM.h:402
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
equals
Definition: BetweenFactorEM.h:101
BetweenFactorEM(Key key1, Key key2, const VALUE &measured, const SharedGaussian &model_inlier, const SharedGaussian &model_outlier, const double prior_inlier, const double prior_outlier, const bool flag_bump_up_near_zero_probs=false)
Constructor.
Definition: BetweenFactorEM.h:72
boost::shared_ptr< BetweenFactorEM > shared_ptr
concept check by type
Definition: BetweenFactorEM.h:65
BetweenFactorEM()
default constructor - only use for serialization
Definition: BetweenFactorEM.h:68
boost::shared_ptr< GaussianFactor > linearize(const Values &x) const override
Linearize a non-linearFactorN to get a GaussianFactor, Hence .
Definition: BetweenFactorEM.h:129
friend class boost::serialization::access
Serialization function.
Definition: BetweenFactorEM.h:413
size_t dim() const override
get the dimension of the factor (number of rows on linearization)
Definition: BetweenFactorEM.h:406
double error(const Values &x) const override
implement functions needed to derive from Factor
Definition: BetweenFactorEM.h:118