gtsam 4.1.1
gtsam
ExtendedKalmanFilter.h
Go to the documentation of this file.
1/* ----------------------------------------------------------------------------
2
3 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4 * Atlanta, Georgia 30332-0415
5 * All Rights Reserved
6 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7
8 * See LICENSE for the license information
9
10 * -------------------------------------------------------------------------- */
11
19// \callgraph
20#pragma once
21
24
25namespace gtsam {
26
44template <class VALUE>
46 // Check that VALUE type is a testable Manifold
47 BOOST_CONCEPT_ASSERT((IsTestable<VALUE>));
48 BOOST_CONCEPT_ASSERT((IsManifold<VALUE>));
49
50 public:
51 typedef boost::shared_ptr<ExtendedKalmanFilter<VALUE> > shared_ptr;
52 typedef VALUE T;
53
54 //@deprecated: any NoiseModelFactor will do, as long as they have the right keys
57
58 protected:
59 T x_; // linearization point
60 JacobianFactor::shared_ptr priorFactor_; // Gaussian density on x_
61
62 static T solve_(const GaussianFactorGraph& linearFactorGraph, const Values& linearizationPoints,
63 Key x, JacobianFactor::shared_ptr* newPrior);
64
65 public:
68
69 ExtendedKalmanFilter(Key key_initial, T x_initial, noiseModel::Gaussian::shared_ptr P_initial);
70
74
76 void print(const std::string& s = "") const {
77 std::cout << s << "\n";
78 x_.print(s + "x");
79 priorFactor_->print(s + "density");
80 }
81
85
90 T predict(const NoiseModelFactor& motionFactor);
91
96 T update(const NoiseModelFactor& measurementFactor);
97
100 return priorFactor_;
101 }
102
104};
105
106} // namespace
107
Class to perform generic Kalman Filtering using nonlinear factor graphs.
Factor Graph consisting of non-linear factors.
Non-linear factor base classes.
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:69
Definition: Testable.h:58
A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
Definition: GaussianFactorGraph.h:69
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: JacobianFactor.h:96
This is a generic Extended Kalman Filter class implemented using nonlinear factors.
Definition: ExtendedKalmanFilter.h:45
T update(const NoiseModelFactor &measurementFactor)
Calculate posterior density P(x_) ~ L(z|x) P(x) The likelihood L(z|x) should be given as a unary fact...
Definition: ExtendedKalmanFilter-inl.h:105
const JacobianFactor::shared_ptr Density() const
Return current predictive (if called after predict)/posterior (if called after update)
Definition: ExtendedKalmanFilter.h:99
T predict(const NoiseModelFactor &motionFactor)
Calculate predictive density P(x_) ~ \int P(x_min) P(x_min, x_) The motion model should be given as a...
Definition: ExtendedKalmanFilter-inl.h:80
void print(const std::string &s="") const
print
Definition: ExtendedKalmanFilter.h:76
A nonlinear sum-of-squares factor with a zero-mean noise model implementing the density Templated on...
Definition: NonlinearFactor.h:162
A convenient base class for creating your own NoiseModelFactor with 1 variable.
Definition: NonlinearFactor.h:285
A non-templated config holding any types of Manifold-group elements.
Definition: Values.h:63