27 typedef Eigen::RowVectorXd RowVector;
46 Base(), active_(true) {
51 throw std::runtime_error(
52 "Cannot convert HessianFactor to LinearInequality");
59 throw std::runtime_error(
60 "Cannot convert an unconstrained JacobianFactor to LinearInequality");
64 throw std::runtime_error(
"Only support single-valued inequality factor!");
70 Base(i1, A1, (Vector(1) << b).finished(),
71 noiseModel::Constrained::All(1)), dualKey_(
dualKey), active_(true) {
77 Base(i1, A1, i2, A2, (Vector(1) << b).finished(),
78 noiseModel::Constrained::All(1)), dualKey_(
dualKey), active_(true) {
84 Base(i1, A1, i2, A2, i3, A3, (Vector(1) << b).finished(),
85 noiseModel::Constrained::All(1)), dualKey_(
dualKey), active_(true) {
92 template<
typename TERMS>
94 Base(terms, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
109 DefaultKeyFormatter)
const {
111 Base::print(s +
" Active", formatter);
113 Base::print(s +
" Inactive", formatter);
119 > (boost::make_shared < LinearInequality > (*
this));
144 return unweighted_error(c);
156 Vector pj = p.
at(*xj);
157 Vector aj =
getA(xj).transpose();
Key dualKey() const
dual key
Definition: LinearInequality.h:123
Vector error_vector(const VectorValues &c) const
Special error_vector for constraints (A*x-b)
Definition: LinearInequality.h:143
This is the base class for all factor types.
Definition: Factor.h:54
LinearInequality(Key i1, const RowVector &A1, Key i2, const RowVector &A2, Key i3, const RowVector &A3, double b, Key dualKey)
Construct ternary factor.
Definition: LinearInequality.h:82
bool isConstrained() const
is noise model constrained ?
Definition: JacobianFactor.h:238
virtual void print(const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const
print
Definition: LinearInequality.h:108
bool active() const
return true if this constraint is active
Definition: LinearInequality.h:128
void activate()
Make this inequality constraint active.
Definition: LinearInequality.h:133
LinearInequality This
Typedef to this class.
Definition: LinearInequality.h:35
LinearInequality(const TERMS &terms, double b, Key dualKey)
Construct an n-ary factor.
Definition: LinearInequality.h:93
virtual double error(const VectorValues &c) const
Special error for single-valued inequality constraints.
Definition: LinearInequality.h:148
double dotProductRow(const VectorValues &p) const
dot product of row s with the corresponding vector in p
Definition: LinearInequality.h:153
This class defines a linear inequality constraint Ax-b <= 0, inheriting JacobianFactor with the speci...
Definition: LinearInequality.h:33
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:57
A helper that implements the traits interface for GTSAM types.
Definition: Testable.h:150
An abstract virtual base class for JacobianFactor and HessianFactor.
Definition: GaussianFactor.h:38
boost::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:33
void inactivate()
Make this inequality constraint inactive.
Definition: LinearInequality.h:138
constABlock getA() const
Get a view of the A matrix, not weighted by noise.
Definition: JacobianFactor.h:270
This class represents a collection of vector-valued variables associated each with a unique integer i...
Definition: VectorValues.h:73
A manifold defines a space in which there is a notion of a linear tangent space that can be centered ...
Definition: concepts.h:30
A Gaussian factor in the squared-error form.
Definition: JacobianFactor.h:87
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
Equals for testable.
Definition: JacobianFactor.cpp:375
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
LinearInequality(const HessianFactor &hf)
Conversion from HessianFactor.
Definition: LinearInequality.h:50
LinearInequality(Key i1, const RowVector &A1, Key i2, const RowVector &A2, double b, Key dualKey)
Construct binary factor.
Definition: LinearInequality.h:75
LinearInequality(Key i1, const RowVector &A1, double b, Key dualKey)
Construct unary factor.
Definition: LinearInequality.h:69
KeyVector::const_iterator const_iterator
Const iterator over keys.
Definition: Factor.h:67
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
equals
Definition: LinearInequality.h:103
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: LinearInequality.h:37
JacobianFactor Base
Typedef to base class.
Definition: LinearInequality.h:36
virtual ~LinearInequality()
Virtual destructor.
Definition: LinearInequality.h:99
const_iterator begin() const
Iterator at beginning of involved variable keys.
Definition: Factor.h:121
const_iterator end() const
Iterator at end of involved variable keys.
Definition: Factor.h:124
LinearInequality(const JacobianFactor &jf, Key dualKey)
Conversion from JacobianFactor.
Definition: LinearInequality.h:56
const SharedDiagonal & get_model() const
get a copy of model
Definition: JacobianFactor.h:258
virtual GaussianFactor::shared_ptr clone() const
Clone this LinearInequality.
Definition: LinearInequality.h:117
Vector & at(Key j)
Read/write access to the vector value with key j, throws std::out_of_range if j does not exist,...
Definition: VectorValues.h:136
A Gaussian factor using the canonical parameters (information form)
Definition: HessianFactor.h:101
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: GaussianFactor.h:42
LinearInequality()
default constructor for I/O
Definition: LinearInequality.h:45