25 typedef Eigen::RowVectorXd RowVector;
45 throw std::runtime_error(
"Cannot convert HessianFactor to LinearCost");
52 throw std::runtime_error(
53 "Cannot convert a constrained JacobianFactor to LinearCost");
57 throw std::runtime_error(
58 "Only support single-valued linear cost factor!");
64 Base(i1, A1, Vector1::Zero()) {
69 Base(i1, A1, i2, A2, Vector1::Zero()) {
74 const RowVector& A3) :
75 Base(i1, A1, i2, A2, i3, A3, Vector1::Zero()) {
81 template<
typename TERMS>
83 Base(terms, Vector1::Zero()) {
97 DefaultKeyFormatter)
const {
98 Base::print(s +
" LinearCost: ", formatter);
104 > (boost::make_shared < LinearCost > (*
this));
109 return unweighted_error(c);
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
equals
Definition: LinearCost.h:91
This is the base class for all factor types.
Definition: Factor.h:54
bool isConstrained() const
is noise model constrained ?
Definition: JacobianFactor.h:238
LinearCost()
default constructor for I/O
Definition: LinearCost.h:39
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:57
LinearCost This
Typedef to this class.
Definition: LinearCost.h:33
LinearCost(const TERMS &terms)
Construct an n-ary factor.
Definition: LinearCost.h:82
LinearCost(Key i1, const RowVector &A1)
Construct unary factor.
Definition: LinearCost.h:63
A helper that implements the traits interface for GTSAM types.
Definition: Testable.h:150
virtual void print(const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const
print
Definition: LinearCost.h:96
An abstract virtual base class for JacobianFactor and HessianFactor.
Definition: GaussianFactor.h:38
LinearCost(Key i1, const RowVector &A1, Key i2, const RowVector &A2, double b)
Construct binary factor.
Definition: LinearCost.h:68
boost::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:33
This class represents a collection of vector-valued variables associated each with a unique integer i...
Definition: VectorValues.h:73
LinearCost(Key i1, const RowVector &A1, Key i2, const RowVector &A2, Key i3, const RowVector &A3)
Construct ternary factor.
Definition: LinearCost.h:73
Vector error_vector(const VectorValues &c) const
Special error_vector for constraints (A*x-b)
Definition: LinearCost.h:108
This class defines a linear cost function c'x which is a JacobianFactor with only one row.
Definition: LinearCost.h:31
A manifold defines a space in which there is a notion of a linear tangent space that can be centered ...
Definition: concepts.h:30
LinearCost(const JacobianFactor &jf)
Conversion from JacobianFactor.
Definition: LinearCost.h:49
A Gaussian factor in the squared-error form.
Definition: JacobianFactor.h:87
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
Equals for testable.
Definition: JacobianFactor.cpp:375
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: LinearCost.h:35
virtual ~LinearCost()
Virtual destructor.
Definition: LinearCost.h:87
JacobianFactor Base
Typedef to base class.
Definition: LinearCost.h:34
virtual double error(const VectorValues &c) const
Special error for single-valued inequality constraints.
Definition: LinearCost.h:113
virtual GaussianFactor::shared_ptr clone() const
Clone this LinearCost.
Definition: LinearCost.h:102
const SharedDiagonal & get_model() const
get a copy of model
Definition: JacobianFactor.h:258
LinearCost(const HessianFactor &hf)
Conversion from HessianFactor.
Definition: LinearCost.h:44
A Gaussian factor using the canonical parameters (information form)
Definition: HessianFactor.h:101
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: GaussianFactor.h:42