gtsam  4.0.0
gtsam
LinearCost.h
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------------
2 
3  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4  * Atlanta, Georgia 30332-0415
5  * All Rights Reserved
6  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7 
8  * See LICENSE for the license information
9 
10  * -------------------------------------------------------------------------- */
11 
19 #pragma once
20 
22 
23 namespace gtsam {
24 
25 typedef Eigen::RowVectorXd RowVector;
26 
31 class LinearCost: public JacobianFactor {
32 public:
33  typedef LinearCost This;
34  typedef JacobianFactor Base;
35  typedef boost::shared_ptr<This> shared_ptr;
36 
37 public:
40  Base() {
41  }
42 
44  explicit LinearCost(const HessianFactor& hf) {
45  throw std::runtime_error("Cannot convert HessianFactor to LinearCost");
46  }
47 
49  explicit LinearCost(const JacobianFactor& jf) :
50  Base(jf) {
51  if (jf.isConstrained()) {
52  throw std::runtime_error(
53  "Cannot convert a constrained JacobianFactor to LinearCost");
54  }
55 
56  if (jf.get_model()->dim() != 1) {
57  throw std::runtime_error(
58  "Only support single-valued linear cost factor!");
59  }
60  }
61 
63  LinearCost(Key i1, const RowVector& A1) :
64  Base(i1, A1, Vector1::Zero()) {
65  }
66 
68  LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2, double b) :
69  Base(i1, A1, i2, A2, Vector1::Zero()) {
70  }
71 
73  LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2, Key i3,
74  const RowVector& A3) :
75  Base(i1, A1, i2, A2, i3, A3, Vector1::Zero()) {
76  }
77 
81  template<typename TERMS>
82  LinearCost(const TERMS& terms) :
83  Base(terms, Vector1::Zero()) {
84  }
85 
87  virtual ~LinearCost() {
88  }
89 
91  virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const {
92  return Base::equals(lf, tol);
93  }
94 
96  virtual void print(const std::string& s = "", const KeyFormatter& formatter =
97  DefaultKeyFormatter) const {
98  Base::print(s + " LinearCost: ", formatter);
99  }
100 
103  return boost::static_pointer_cast < GaussianFactor
104  > (boost::make_shared < LinearCost > (*this));
105  }
106 
108  Vector error_vector(const VectorValues& c) const {
109  return unweighted_error(c);
110  }
111 
113  virtual double error(const VectorValues& c) const {
114  return error_vector(c)[0];
115  }
116 };
117 // \ LinearCost
118 
120 template<> struct traits<LinearCost> : public Testable<LinearCost> {
121 };
122 
123 } // \ namespace gtsam
124 
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
equals
Definition: LinearCost.h:91
This is the base class for all factor types.
Definition: Factor.h:54
bool isConstrained() const
is noise model constrained ?
Definition: JacobianFactor.h:238
LinearCost()
default constructor for I/O
Definition: LinearCost.h:39
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:57
LinearCost This
Typedef to this class.
Definition: LinearCost.h:33
LinearCost(const TERMS &terms)
Construct an n-ary factor.
Definition: LinearCost.h:82
LinearCost(Key i1, const RowVector &A1)
Construct unary factor.
Definition: LinearCost.h:63
A helper that implements the traits interface for GTSAM types.
Definition: Testable.h:150
virtual void print(const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const
print
Definition: LinearCost.h:96
An abstract virtual base class for JacobianFactor and HessianFactor.
Definition: GaussianFactor.h:38
LinearCost(Key i1, const RowVector &A1, Key i2, const RowVector &A2, double b)
Construct binary factor.
Definition: LinearCost.h:68
boost::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:33
This class represents a collection of vector-valued variables associated each with a unique integer i...
Definition: VectorValues.h:73
LinearCost(Key i1, const RowVector &A1, Key i2, const RowVector &A2, Key i3, const RowVector &A3)
Construct ternary factor.
Definition: LinearCost.h:73
Vector error_vector(const VectorValues &c) const
Special error_vector for constraints (A*x-b)
Definition: LinearCost.h:108
This class defines a linear cost function c'x which is a JacobianFactor with only one row.
Definition: LinearCost.h:31
A manifold defines a space in which there is a notion of a linear tangent space that can be centered ...
Definition: concepts.h:30
LinearCost(const JacobianFactor &jf)
Conversion from JacobianFactor.
Definition: LinearCost.h:49
A Gaussian factor in the squared-error form.
Definition: JacobianFactor.h:87
virtual bool equals(const GaussianFactor &lf, double tol=1e-9) const
Equals for testable.
Definition: JacobianFactor.cpp:375
Global functions in a separate testing namespace.
Definition: chartTesting.h:28
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: LinearCost.h:35
virtual ~LinearCost()
Virtual destructor.
Definition: LinearCost.h:87
JacobianFactor Base
Typedef to base class.
Definition: LinearCost.h:34
virtual double error(const VectorValues &c) const
Special error for single-valued inequality constraints.
Definition: LinearCost.h:113
virtual GaussianFactor::shared_ptr clone() const
Clone this LinearCost.
Definition: LinearCost.h:102
const SharedDiagonal & get_model() const
get a copy of model
Definition: JacobianFactor.h:258
LinearCost(const HessianFactor &hf)
Conversion from HessianFactor.
Definition: LinearCost.h:44
A Gaussian factor using the canonical parameters (information form)
Definition: HessianFactor.h:101
boost::shared_ptr< This > shared_ptr
shared_ptr to this class
Definition: GaussianFactor.h:42