|
gtsam
4.0.0
gtsam
|
Template to construct the product Lie group of two other Lie groups Assumes Lie group structure for G and H.
Inheritance diagram for gtsam::ProductLieGroup< G, H >:Group | |
| typedef multiplicative_group_tag | group_flavor |
| ProductLieGroup | operator * (const ProductLieGroup &other) const |
| ProductLieGroup | inverse () const |
| ProductLieGroup | compose (const ProductLieGroup &g) const |
| ProductLieGroup | between (const ProductLieGroup &g) const |
| static ProductLieGroup | identity () |
Manifold | |
| enum | { dimension = dimension1 + dimension2 } |
| typedef Eigen::Matrix< double, dimension, 1 > | TangentVector |
| typedef OptionalJacobian< dimension, dimension > | ChartJacobian |
| size_t | dim () const |
| ProductLieGroup | retract (const TangentVector &v, ChartJacobian H1=boost::none, ChartJacobian H2=boost::none) const |
| TangentVector | localCoordinates (const ProductLieGroup &g, ChartJacobian H1=boost::none, ChartJacobian H2=boost::none) const |
| static size_t | Dim () |
Lie Group | |
| typedef Eigen::Matrix< double, dimension, dimension > | Jacobian |
| typedef Eigen::Matrix< double, dimension1, dimension1 > | Jacobian1 |
| typedef Eigen::Matrix< double, dimension2, dimension2 > | Jacobian2 |
| ProductLieGroup | compose (const ProductLieGroup &other, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| ProductLieGroup | between (const ProductLieGroup &other, ChartJacobian H1, ChartJacobian H2=boost::none) const |
| ProductLieGroup | inverse (ChartJacobian D) const |
| ProductLieGroup | expmap (const TangentVector &v) const |
| TangentVector | logmap (const ProductLieGroup &g) const |
| static ProductLieGroup | Expmap (const TangentVector &v, ChartJacobian Hv=boost::none) |
| static TangentVector | Logmap (const ProductLieGroup &p, ChartJacobian Hp=boost::none) |
Public Member Functions | |
| ProductLieGroup () | |
| Default constructor yields identity. | |
| ProductLieGroup (const G &g, const H &h) | |
| ProductLieGroup (const Base &base) | |
Protected Types | |
| enum | { dimension1 = traits<G>::dimension } |
| enum | { dimension2 = traits<H>::dimension } |